【題目】在一次“構造勾股數”的探究性學習中,老師給出了下表:
m | 2 | 3 | 3 | 4 | … |
n | 1 | 1 | 2 | 3 | … |
a | 22+12 | 32+12 | 32+22 | 42+32 | … |
b | 4 | 6 | 12 | 24 | … |
c | 22﹣12 | 32﹣12 | 32﹣22 | 42﹣32 | … |
其中m、n為正整數,且m>n.
(1)觀察表格,當m=2,n=1時,此時對應的a、b、c的值能否為直角三角形三邊的長?說明你的理由.
(2)探究a,b,c與m、n之間的關系并用含m、n的代數式表示:a= ,b= ,c= .
(3)以a,b,c為邊長的三角形是否一定為直角三角形?如果是,請說明理由;如果不是,請舉出反例.
【答案】(1)a、b、c的值能為直角三角形三邊的長;(2)a=m2+n2,b=2mn,c=m2﹣n2;(3)以a,b,c為邊長的三角形一定為直角三角形.
【解析】
試題分析:(1)計算出a、b、c的值,根據勾股定理的逆定理判斷即可;
(2)根據給出的數據總結即可;
(3)分別計算出a2、b2、c2,根據勾股定理的逆定理進行判斷.
解:(1)當m=2,n=1時,a=5、b=4、c=3,
∵32+42=52,
∴a、b、c的值能為直角三角形三邊的長;
(2)觀察得,a=m2+n2,b=2mn,c=m2﹣n2;
(3)以a,b,c為邊長的三角形一定為直角三角形,
∵a2=(m2+n2)2=m4+2m2n2+n4,
b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,
∴a2=b2+c2,
∴以a,b,c為邊長的三角形一定為直角三角形.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com