【題目】如圖①,△ABC與△ADE均是等腰直角三角形,直角邊AC、AD在同一條直線上,點(diǎn)G、H分別是斜邊DE、BC的中點(diǎn),點(diǎn)F為BE的中點(diǎn),連接GF、GH.
(1)猜想GF與GH的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△ADE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)若AD=2,AC=4,將圖①中的△ADE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)一周,直接寫出GH的最大值和最小值,并寫出取得最值時(shí)旋轉(zhuǎn)角的度數(shù).
【答案】(1),(2)成立,理由見解析;(3)當(dāng)點(diǎn)D在線段BA的延長(zhǎng)線上時(shí),BD有最大值為AD+AB=6,即GF最小值為3,旋轉(zhuǎn)角的度數(shù)為90°.
【解析】
(1)連接CE,FH,BD,延長(zhǎng)BD交CE于N,由“SAS”可證△ACE≌△ABD,可得EC=DB,∠ACE=∠ABD,通過證明△GFH是等腰直角三角形,可得結(jié)論;
(2)連接CE,FH,BD,延長(zhǎng)BD交CE于N,由“SAS”可證△ACE≌△ABD,可得EC=DB,∠ACE=∠ABD,通過證明△GFH是等腰直角三角形,可得結(jié)論;
(3)由GH=GF,GF=BD,可得GF=BD,則當(dāng)點(diǎn)D在線段AB上時(shí),BD有最小值為AB-AD=2,即GF最小值為,當(dāng)點(diǎn)D在線段BA的延長(zhǎng)線上時(shí),BD有最大值為AD+AB=6,即GF最小值為3,即可求解.
(1),
理由如下:連接CE,FH,BD,延長(zhǎng)BD交CE于N,
∵△ACB和△ADE是等腰直角三角形,
∴AC=AB,AE=AD,∠CAB=∠EAD=90°.
∴△ACE≌△ABD(SAS),
∴EC=DB,∠ACE=∠ABD.
又∵∠ACE+∠CEA=90°,
∴∠ABD+∠CEA=90°,
∴∠BNE=90°,
∵點(diǎn)G、F、H分別為ED、EB、BC的中點(diǎn),
∴GF=BD,GF∥BD,FH=EC,FH∥EC.
∴CF=FH,∠ENB=∠FOB=∠GFH=90°,
∴△GFH是等腰直角三角形,
∴GH=GF;
(2)連接EC,FH,BD,EC交BD于點(diǎn)I,交GF于點(diǎn)M,FH交BD于N,
∵△ACB和△ADE是等腰直角三角形,
∴AC=AB,AE=AD,∠CAB=∠EAD=90°,
∴∠CAB+∠DAC=∠EAD+∠DAC.
∴∠EAC=∠BAD,
∴△ACE≌△ABD(SAS),
∴EC=DB,∠ACE=∠ABD.
又∵∠AOB=∠COI,
∴∠OIC=∠BAO=90°,
∵點(diǎn)G、F、H分別為ED、EB、BC的中點(diǎn),
∴GF=BD,GF∥BD,FH=EC,FH∥EC.
∴GF=FH.四邊形FMIN是平行四邊形,
∴∠MFN=∠MIN=180°﹣90°=90°,
∴△GFH是等腰直角三角形,
∴;
(3)∵GH=GF,GF=BD,
∴GF=BD,
∴當(dāng)BD有最大值時(shí),GF有最大值,當(dāng)BD有最小值時(shí),GF有最小值,
∴當(dāng)點(diǎn)D在線段AB上時(shí),BD有最小值為AB﹣AD=2,即GF最小值為,旋轉(zhuǎn)角的度數(shù)為270°;
當(dāng)點(diǎn)D在線段BA的延長(zhǎng)線上時(shí),BD有最大值為AD+AB=6,即GF最小值為3,旋轉(zhuǎn)角的度數(shù)為90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長(zhǎng)交AB于點(diǎn)Q,延長(zhǎng)EF交AC于點(diǎn)N.若N為AC的中點(diǎn),DE=2BE,QB=3,求鄰余線AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O1經(jīng)過A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四點(diǎn),一次函數(shù)y=-x-2的圖象是直線l,直線l與y軸交于點(diǎn)D.
(1)在右邊的平面直角坐標(biāo)系中畫出直線l,則直線l與⊙O1的交點(diǎn)坐標(biāo)為 ;
(2)若⊙O1上存在點(diǎn)P,使得△APD為等腰三角形,則這樣的點(diǎn)P有 個(gè),試寫出其中一個(gè)點(diǎn)P坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(-1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過點(diǎn)F作FE⊥x軸,FG⊥y軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),籃球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮正在參加學(xué)校舉辦的古詩詞比賽節(jié)目,他須答對(duì)兩道單選題才能順利通過最后一關(guān),其中第一題有A、B、C、D共4個(gè)選項(xiàng),第二題有A、B、C共3個(gè)選項(xiàng),而這兩題小亮都不會(huì),但小亮有一次使用“特權(quán)”的機(jī)會(huì)(使用“特權(quán)”可去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小亮第一題不使用“特權(quán)”,隨機(jī)選擇一個(gè)選項(xiàng),那么小亮答對(duì)第一題的概率是________.
(2)如果小亮將“特權(quán)”留在第二題,請(qǐng)用畫樹狀圖或列表法來求出小亮通過最后一關(guān)的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為擴(kuò)大銷售,增加盈利,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件.
(1)每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天的盈利是1050元?
(2)每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天盈利最大?最大盈利是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長(zhǎng)線上,且∠DAE=∠F.
(1) 求證:△ABE∽△ECF;
(2) 若AB=5,AD=8,BE=2,求FC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com