【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
【答案】B
【解析】分析: 首先證明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,進(jìn)而可得EC=AB=5m,再求出BE的長(zhǎng),然后利用路程除以速度可得時(shí)間
詳解: :∵∠AED=90°,
∴∠AEB+∠DEC=90°,
∵ABE=90°,
∴∠A+∠AEB=90°,
∴∠A=∠DEC,
在△ABE和△DCE中
,
∴△ABE≌△ECD(AAS),
∴EC=AB=5m,
∵BC=13m,
∴BE=8m,
∴小華走的時(shí)間是8÷1=8(s),
故選:B.
點(diǎn)睛: 此題主要考查了全等三角形的應(yīng)用,關(guān)鍵是正確判定△ABE≌△ECD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若AB是⊙0的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=( )
A.116°
B.32°
C.58°
D.64°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,E是AD中點(diǎn),EF⊥BC于點(diǎn)F,BC=5,EF=3.
(1)若AB=DC,則四邊形ABCD的面積S=__;
(2)若AB>DC,則此時(shí)四邊形ABCD的面積S′__S(用“>”或“=”或“<”填空).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形,其中圖形①中共有2顆星,圖形②中共有6顆星,圖形③中共有11顆星,圖形④中共有17顆星,…,按此規(guī)律,圖形⑧中星星的顆數(shù)是( )
A.43
B.45
C.51
D.53
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的三個(gè)外角的度數(shù)比為 2:3:4,則它的最小內(nèi)角的度數(shù)是( )
A.20°B.40°C.60°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,求證:∠3=∠B
證明:
∵∠D=110°,∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥EF( )
又∵∠1=∠2(已知)
∴ ∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴EF∥BC( )
∴∠3=∠B( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A′B′C′是由△ABC平移后得到的,已知△ABC中一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)P′(x0+5,y0-2).
(1)已知A(-1,2),B(-4,5),C(-3,0),請(qǐng)寫出A′、B′、C′的坐標(biāo);
(2)試說明△A′B′C′是如何由△ABC平移得到的;
(3)請(qǐng)直接寫出△A′B′C′的面積為6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點(diǎn),E,F(xiàn)分別為PB,PC的中點(diǎn),△PEF,△PDC,△PAB的面積分別為S,S1,S2.若S=3,則S1+S2的值為( )
A.24 B.12 C.6 D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com