【題目】生產(chǎn)某種農(nóng)產(chǎn)品的成本每千克20元,調(diào)查發(fā)現(xiàn),該產(chǎn)品每天銷售量y(千克)與銷售單價(jià)x(元/千克)滿足如下關(guān)系:,設(shè)這種農(nóng)產(chǎn)品的銷售利潤(rùn)為w元.

1)求wx之間的函數(shù)關(guān)系式.

2)該產(chǎn)品銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

3)物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷售價(jià)不得高于每千克28元,該農(nóng)戶想在這種產(chǎn)品經(jīng)銷季節(jié)每天獲得150元的利潤(rùn),銷售價(jià)應(yīng)定為每千克多少元?

【答案】1w=-2x-302+200;(2)當(dāng)x=30時(shí),w有最大值.w最大值為200;(325

【解析】

1)根據(jù)總利潤(rùn)=銷售量×單件利潤(rùn),列出函數(shù)關(guān)系式;

2)利用二次函數(shù)的性質(zhì)求最大值;
3)把w=150代入(2)的函數(shù)關(guān)系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值.

解:(1)根據(jù)題意得:w=x-20)(-2x+80=-2x-302+200,
wx的函數(shù)關(guān)系式為:w=-2x-302+200;

2w=-2x-302+200

所以當(dāng)x=30時(shí),w有最大值.w最大值為200

3)當(dāng)w=150時(shí),可得方程-2x-302+200=150
解得x1=35,x2=25
因?yàn)?/span>3528
所以x1=35不符合題意,應(yīng)舍去.

故銷售價(jià)應(yīng)定為每千克25元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的頂點(diǎn)、在圓上,若,圓的半徑為2,則陰影部分的面積是__________.(結(jié)果保留根號(hào)和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,弦CDAB于點(diǎn)E,點(diǎn)G為弧BC上一動(dòng)點(diǎn),CGAB的延長(zhǎng)線交于點(diǎn)F,連接OD

1)判定∠AOD與∠CGD的大小關(guān)系為   ,并求證:GB平分∠DGF

2)在G點(diǎn)運(yùn)動(dòng)過(guò)程中,當(dāng)GDGF時(shí),DE4,BF,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫(xiě)出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線過(guò)點(diǎn),交x軸于A,B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè)

求拋物線的解析式,并寫(xiě)出頂點(diǎn)M的坐標(biāo);

連接OC,CM,求的值;

若點(diǎn)P在拋物線的對(duì)稱軸上,連接BP,CP,BM,當(dāng)時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)在教學(xué)樓的點(diǎn)P處觀察對(duì)面的辦公大樓.為了測(cè)量點(diǎn)P到對(duì)面辦公大樓上部AD的距離,小強(qiáng)測(cè)得辦公大樓頂部點(diǎn)A的仰角為45°,測(cè)得辦公大樓底部點(diǎn)B的俯角為60°,已知辦公大樓高46米,CD10米.求點(diǎn)PAD的距離(用含根號(hào)的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=60°OF平分∠MON,點(diǎn)A在射線OM上, P,Q是射線ON上的兩動(dòng)點(diǎn),點(diǎn)P在點(diǎn)Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OMOFON于點(diǎn)D,BC,連接AB,PB

1)依題意補(bǔ)全圖形;

2)判斷線段 ABPB之間的數(shù)量關(guān)系,并證明;

3)連接AP,設(shè),當(dāng)PQ兩點(diǎn)都在射線ON上移動(dòng)時(shí),是否存在最小值?若存在,請(qǐng)直接寫(xiě)出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.

(1)小明選擇去蜀南竹海旅游的概率為

(2)用樹(shù)狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊OAOC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過(guò)P點(diǎn)作BP的垂線,與過(guò)點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BDy軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)

(1)PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (t表示);

(2)當(dāng)t為何值時(shí),PBE為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案