精英家教網(wǎng)在同一坐標(biāo)系內(nèi)畫出一次函數(shù)y1=-x+1與y2=2x-2的圖象,并根據(jù)圖象回答下列問題:
(1)寫出直線y1=-x+1與y2=2x-2的交點(diǎn)坐標(biāo);
(2)直接寫出,當(dāng)x取何值時(shí),y1<y2?
分析:(1)兩直線相交時(shí)交點(diǎn)的坐標(biāo)應(yīng)該是
y=-x+1
y=2x-2
的解;
(2)y1<y2,即-x+1<2x-2,解得x即可.
解答:精英家教網(wǎng)解:(1)兩直線相交時(shí)交點(diǎn)的坐標(biāo)是
y=-x+1
y=2x-2
的解
x=1
y=0

所以交點(diǎn)的坐標(biāo)是(1,0)
圖象用兩點(diǎn)法畫即可:
y1=-x+1與坐標(biāo)軸的交點(diǎn)為(0,1),(1,0)
y2=2x-2與坐標(biāo)軸的交點(diǎn)為(0,-2),(1,0)
直接連線即可

(2)y1<y2,即y1的圖象在y2,圖象的下方,此時(shí)x>1.
點(diǎn)評(píng):本題主要考查了一次函數(shù)的圖象的畫法及一次函數(shù)與方程等綜合知識(shí).兩個(gè)一次函數(shù)相交,交點(diǎn)的坐標(biāo)中的x,y值就是以兩個(gè)函數(shù)式組成的方程組的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某通訊公司開設(shè)了甲乙兩種通訊服務(wù)方式:業(yè)務(wù)甲的使用者需先繳50元的月租費(fèi),然后每通話一分鐘再付費(fèi)0.2元;業(yè)務(wù)乙的使用者不需繳納月租費(fèi),但每通話一分鐘需付費(fèi)0.4元.若設(shè)一個(gè)月內(nèi)通話x分鐘,甲乙兩種方式的費(fèi)用分別為y1元和y2元,
(1)分別寫出y1、y2與x的函數(shù)解析式;
(2)在同一直角坐標(biāo)系內(nèi)畫出兩函數(shù)的圖象;
(3)試設(shè)計(jì):在一個(gè)月內(nèi)選擇哪種通訊方式的費(fèi)用較低?(須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

分別在同一直角坐標(biāo)系內(nèi)畫出下列每組函數(shù)的圖象,并說一說它們的共同之處和不同之處.

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某通訊公司開設(shè)了甲乙兩種通訊服務(wù)方式:業(yè)務(wù)甲的使用者需先繳50元的月租費(fèi),然后每通話一分鐘再付費(fèi)0.2元;業(yè)務(wù)乙的使用者不需繳納月租費(fèi),但每通話一分鐘需付費(fèi)0.4元.若設(shè)一個(gè)月內(nèi)通話x分鐘,甲乙兩種方式的費(fèi)用分別為y1元和y2元,
(1)分別寫出y1、y2與x的函數(shù)解析式;
(2)在同一直角坐標(biāo)系內(nèi)畫出兩函數(shù)的圖象;
(3)試設(shè)計(jì):在一個(gè)月內(nèi)選擇哪種通訊方式的費(fèi)用較低?(須說明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案