【題目】如圖,在矩形ABCD中,AB4,AD6,點EAD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CECF,當(dāng)△ECF為直角三角形時,AP的長為______.

【答案】1

【解析】

分∠CFE=90°和∠CEF=90°兩種情況求AP得長即可.

當(dāng)∠CFE=90°(如圖所示),ECF是直角三角形,

由折疊可得,∠PFE=A=90°,AE=FE=DE,

∴∠CFP=180°,即點P,F(xiàn),C在一條直線上,

RtCDERtCFE中,

,

RtCDERtCFE(HL),

CF=CD=4,

設(shè)AP=FP=x,則BP=4﹣x,CP=x+4,

RtBCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,

解得x=,即AP=

當(dāng)∠CEF=90°如圖所示),ECF是直角三角形,

FFHABH,作FQADQ,則∠FQE=D=90°,

又∵∠FEQ+∠CED=90°=ECD+∠CED,

∴∠FEQ=ECD,

∴△FEQ∽△ECD,

,即

解得FQ=,QE= ,

AQ=HF=,AH=,

設(shè)AP=FP=x,則HP=﹣x,

RtPFH中,HP2+HF2=PF2,即(﹣x)2+2=x2

解得x=1,即AP=1.

綜上所述,AP的長為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社推出一條成本價為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報價(元/人)之間的關(guān)系為,已知:旅游主管部門規(guī)定該旅游線路報價在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報價的取值范圍;

(2)求經(jīng)營這條旅游線路每月所需要的最低成本;

(3)當(dāng)這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1l2l3,且l1l2的距離為1,l2l3的距離為3.把一塊含有45°角的直角三角板如圖所示放置,頂點AB,C恰好分別落在三條直線上,AC與直線l2交于點D,則線段BD的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,ECD上一點,動點P從點A出發(fā)沿折線AEECCB運動到點B時停止,動點Q從點A沿AB運動到點B時停止,它們的速度均為每秒1cm.如果點P、Q同時從點A處開始運動,設(shè)運動時間為xs),△APQ的面積為ycm2,已知yx的函數(shù)圖象如圖2所示,以下結(jié)論:AB5cmcosAED ;當(dāng)0x5時,y;當(dāng)x6時,△APQ是等腰三角形;當(dāng)7x11時,y.其中正確的有( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,在RtABC中,ABAC,DBC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BDCE的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:如圖2,在RtABCRtADE中,ABACADAE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC的延長線上時,連接EC,寫出此時線段AD,BDCD之間的等量關(guān)系,并證明;

3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC45°.若BF13,CF5,請直接寫出AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17.

(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?

(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應(yīng)如何安排車輛最節(jié)省費用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(1)班班主任對本班學(xué)生進行了我最喜歡的課外活動的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音禾類(記為B)、球類(記為C)、其他類(記為D).根據(jù)調(diào)査結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進行了登記且每人只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)査情況把學(xué)生進行了歸類,并制作了如下兩幅統(tǒng)計圖.請你結(jié)合圖中所給信息解答下列同題:

1)七年級(1)班學(xué)生總?cè)藬?shù)為______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為______度,請補全條形統(tǒng)計圖;

2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A4名學(xué)生中有兩名學(xué)生擅長書法,另兩名學(xué)生擅長繪畫.班主任現(xiàn)從A4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.

3)如果全市有5萬名初中生,那么全市初中生中,喜歡球類的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=y軸交于點A,頂點為B,直線ly=-x+b經(jīng)過點A,與拋物線的對稱軸交于點C,點P是對稱軸上的一個動點,若AP+PC的值最小,則點P的坐標(biāo)為(

A. 31

B. 3,

C. 3,

D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

同步練習(xí)冊答案