【題目】如圖所示,等邊三角形沿射線向右平移到的位置,連接、,則下列結(jié)論:(1)(2)與互相平分(3)四邊形是菱形(4),其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】
先求出∠ACD=60°,繼而可判斷△ACD是等邊三角形,從而可判斷①是正確的;根據(jù)①的結(jié)論,可判斷四邊形ABCD是平行四邊形,從而可判斷②是正確的;再結(jié)合①的結(jié)論,可判斷③正確;根據(jù)菱形的對(duì)角線互相垂直可得AC⊥BD,再根據(jù)平移后對(duì)應(yīng)線段互相平行可得∠BDE=∠COD=90°,進(jìn)而判斷④正確.
解:如圖:∵△ABC,△DCE是等邊三角形
∴∠ACB=∠DCE=60°,AC=CD
∴∠ACD=180°-∠ACB-∠DCE=60°
∴△ACD是等邊三角形
∴AD=AC=BC,故①正確;
由①可得AD=BC
∵AB=CD
∴四邊形ABCD是平行四邊形,
∴BD、AC互相平分,故②正確;
由①可得AD=AC=CE=DE故四邊形ACED是菱形,即③ 正確
∵四邊形ABCD是平行四邊形,BA=BC
∴.四邊形ABCD是菱形
∴AC⊥BD,AC//DE
∴∠BDE=∠COD=90°
∴BD⊥DE,故④正確
綜上可得①②③④正確,共4個(gè).
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,
(1)按下列要求完成尺規(guī)作圖:作線段AC的垂直平分線l,交AC于點(diǎn)O;連接BO并延長(zhǎng)至D,使得OD=OB;連接DA、DC(保留作圖痕跡,請(qǐng)標(biāo)明字母);
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,過⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,射線DC切⊙O于點(diǎn)C、交AB的延長(zhǎng)線于點(diǎn)P,連接AC交DE于點(diǎn)F,作CH⊥AB于點(diǎn)H.
(1)求證:∠D=2∠A;
(2)若HB=2,cosD=,請(qǐng)求出⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)去年計(jì)劃生產(chǎn)玉米和小麥共200噸.采用新技術(shù)后,實(shí)際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場(chǎng)去年實(shí)際生產(chǎn)玉米、小麥各多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,∠C=90°.
(1)如圖1,在邊BC上求作點(diǎn)P,使得點(diǎn)P到AB的距離等于點(diǎn)P到點(diǎn)C的距離.(尺規(guī)作圖,保留痕跡)
(2)如圖2,請(qǐng)利用沒有刻度的直尺和圓規(guī)在線段AB上找一點(diǎn)F,使得點(diǎn)F到AC的距離等于FB(注:不寫作法,保留痕跡,對(duì)圖中涉及到點(diǎn)用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】月電科技有限公司用160萬元,作為新產(chǎn)品的研發(fā)費(fèi)用,成功研制出了一種市場(chǎng)急需的電子
產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進(jìn)行銷售.已知生產(chǎn)這種電子產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):
每年的年銷售量(萬件)與銷售價(jià)格(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一
部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種電子產(chǎn)品的年利潤(rùn)為(萬元).(注:若上一
年盈利,則盈利不計(jì)入下一年的年利潤(rùn);若上一年虧損,則虧損計(jì)作下一年的成本.)
(1)請(qǐng)求出(萬件)與(元/件)之間的函數(shù)關(guān)系式;
(2)求出第一年這種電子產(chǎn)品的年利潤(rùn)(萬元)與(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤(rùn)的最大值;
(3)假設(shè)公司的這種電子產(chǎn)品第一年恰好按年利潤(rùn)(萬元)取得最大值時(shí)進(jìn)行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種電子產(chǎn)品每件的銷售價(jià)格(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧?rùn)不低于103萬元時(shí),請(qǐng)結(jié)合年利潤(rùn)(萬元)與銷售價(jià)格(元/件)的函數(shù)示意圖,求銷售價(jià)格(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中AD=12,AB=9,E為AD的中點(diǎn),G是DC上一點(diǎn),連接BE,BG,GE,并延長(zhǎng)GE交BA的延長(zhǎng)線于點(diǎn)F,GC=5
(1)求BG的長(zhǎng)度;
(2)求證:是直角三角形
(3)求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com