【題目】如圖,矩形ABCD的對角線相交于點O,DEAC,CEBD

(1)求證:四邊形OCED是菱形.

(2)當∠ACB=30°,菱形OCED的面積為,求AC的長.

【答案】1)證明見解析;(2AC=4

【解析】

1)首先由CEBD,DEAC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD,即可判定四邊形OCED是菱形.

2)因為∠ACB=30°可證明菱形的一條對角線和邊長相等,可證明和對角線構(gòu)成等邊三角形,然后作輔助線,根據(jù)菱形的面積已知可求解.

1)解:∵CEBDDEAC,

∴四邊形CODE是平行四邊形,

∵四邊形ABCD是矩形,

AC=BD,OA=OCOB=OD,

OD=OC,

∴四邊形OCED是菱形;

2)解:∵∠ACB=30°,

∴∠DCO=90°-30°=60°

又∵OD=OC,

∴△OCD是等邊三角形.

DDFOCF,則CF=OC,設CF=x,則OC=2x,AC=4x

RtDFC中,tan60°=

DF=x

OCDF=2

x=1

AC=1×4=4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.

(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將摸出黑球記為事件A,請完成下列表格;

(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則( )

A. DE=EB B. DE=EB C. DE=DO D. DE=OB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是ABC的外接圓,AB是O的直徑,AB=8.

(1)利用尺規(guī),作CAB的平分線,交O于點D;(保留作圖痕跡,不寫作法)

(2)在(1)的條件下,連接CD,OD,若AC=CD,求B的度數(shù);

(3)在(2)的條件下,OD交BC于點E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師將1個黑球和若干個白球(這些球除顏色外都相同)放入一個不透明的口袋并攪勻,讓若干學生進行摸球?qū)嶒灒看蚊?個球(有放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

1000

摸出黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.23

0.207

0.30

0.26

0.254

0.251

(1)根據(jù)上表數(shù)據(jù)估計從袋中摸出1個球是黑球的概率是_________;

(2)估計袋中白球的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩部不同型號的手機(分別記為A,B)和與之匹配的2個保護蓋(分別記為ab)散亂地放在桌子上.

(1)若從手機中隨機取一部,再從保護蓋中隨機取一個,求恰好匹配的概率;

(2)若從手機和保護蓋中隨機取兩個,用畫樹狀圖法或列表法求恰好匹配的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學的小明和朱老師一起到一條筆直的跑道上鍛煉身體,到達起點后小明做了一會準備活動朱老師先跑,當小明出發(fā)時,朱老師已經(jīng)距起點200米了,他們距起點的距離s(米)與小明出發(fā)的時間t(秒)之間的關(guān)系如圖所示(不完整).根據(jù)圖中給出的信息,解答下列問題:

(1)在上述變化過程中,自變量是   ,因變量是   ;

(2)朱老師的速度為   米/秒;小明的速度為   米/秒;

(3)小明與朱老師相遇   次,相遇時距起點的距離分別為   米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中:

長為的線段沿某一方向平移后,平移后線段的長為;

三角形的高在三角形內(nèi)部;

六邊形的內(nèi)角和是外角和的兩倍;

平行于同一直線的兩直線平行;

兩個角的兩邊分別平行,則這兩個角相等,真命題個數(shù)有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過點(0,5)

(1)求m的值,并寫出二次函數(shù)的表達式;

(2)求出二次函數(shù)圖象的頂點坐標、對稱軸。

查看答案和解析>>

同步練習冊答案