如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0,
3
),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰經(jīng)過(guò)x軸上的點(diǎn)A,B.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線向上平移后恰好經(jīng)過(guò)點(diǎn)D,求平移后拋物線的解析式.
(1)連接AC,在菱形ABCD中,CDAB,
AB=BC=CD=DA,
由拋物線對(duì)稱性可知AC=BC.(1分)
∴△ABC,△ACD都是等邊三角形.
∴CD=AD=
OD
sin60°
=2(2分)
∴點(diǎn)C的坐標(biāo)為(2,
3
).(3分)

(2)由拋物線y=ax2+bx+c的頂點(diǎn)為(2,
3
),
可設(shè)拋物線的解析式為.y=a(x-2)2+
3

由(1)可得A(1,0),把A(1,0)代入上式,
解得a=-
3
.(5分)
設(shè)平移后拋物線的解析式為y=-
3
(x-2)2+k,
把(0,
3
)代入上式得K=5
3

∴平移后拋物線的解析式為:
y=-
3
(x-2)2+5
3
(7分)
即y=-
3
x2+4
3
x+
3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一直角坐標(biāo)系中表示y=ax2和y=ax+b(ab>0)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y=ax2+bx+c經(jīng)過(guò)原點(diǎn)和二、三、四象限,判斷a、b、c的符號(hào)情況:a______0,b______0,C______0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列5個(gè)結(jié)論:
①abc<0;②a+c>b;③4a+2b+c>0;④c>-2a;⑤a+b>am2+bm(m≠1).
其中正確的結(jié)論有______(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc>0;②a+b+c=2;③a>
1
2
;④b<1.其中正確的結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y=ax2+bx+c(a≠0)的圖象如圖所示,則:a______0,b______0,c______0,b2-4ac______0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),轉(zhuǎn)盤分為5個(gè)扇形區(qū)域,分別是特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)及不獲獎(jiǎng),制作轉(zhuǎn)盤時(shí),將獲獎(jiǎng)扇形區(qū)域圓心角分配如下表:
獎(jiǎng)次特等獎(jiǎng)一等獎(jiǎng)二等獎(jiǎng)三等獎(jiǎng)
圓心角10°20°30°90°
如果不用轉(zhuǎn)盤,請(qǐng)?jiān)O(shè)計(jì)一種等效試驗(yàn)方案.(要求寫(xiě)清楚替代工具和試驗(yàn)規(guī)則)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩形ABCD中,AB=4,對(duì)角線BD=2AB,且BE平分∠ABD,點(diǎn)P從點(diǎn)D以每秒2個(gè)單位沿DB方向向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B以每秒1個(gè)單位沿BA方向向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△BPQ的面積為S.
(1)若t=2時(shí),求證:△DBA△PBQ;
(2)求S關(guān)于t的函數(shù)關(guān)系式及S的最大值;
(3)在運(yùn)動(dòng)的過(guò)程中,△BQM能否成為等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某通訊器材公司銷售一種市場(chǎng)需求較大的新型通訊產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,每年銷售該產(chǎn)品的總開(kāi)支(不含進(jìn)價(jià))總計(jì)120萬(wàn)元,在銷售過(guò)程中發(fā)現(xiàn),年銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間存在如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系;
(2)試寫(xiě)出該公司銷售該種產(chǎn)品的年獲利W(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價(jià)-年總開(kāi)支),當(dāng)銷售單價(jià)為何值時(shí)年獲利最大?并求這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案