(2008•眉山)如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

【答案】分析:(1)先根據(jù)直線的解析式求出拋物線頂點(diǎn)A的坐標(biāo),然后根據(jù)M的坐標(biāo)求出拋物線的解析式.
(2)根據(jù)(1)得出的拋物線可設(shè)出平移后拋物線的解析式,然后將原點(diǎn)坐標(biāo)代入即可求出平移后函數(shù)的解析式.進(jìn)而可求出向右平移后拋物線對(duì)稱軸與直線AB的交點(diǎn).然后證OC是否與AB垂直即可.
(3)存在要分兩種情況進(jìn)行討論:
①以O(shè)A、AC為邊,那么將C點(diǎn)向下平移OA個(gè)單位即可得出P點(diǎn)的坐標(biāo).
②以O(shè)A為邊,AC為對(duì)角線,將C點(diǎn)坐標(biāo)向上平移OA個(gè)單位即可得出P點(diǎn)坐標(biāo).
解答:解:(1)易知:A(0,2),
因此可設(shè)拋物線的解析式為y=ax2+2,已知拋物線過(guò)M點(diǎn),
則有:a×(-2+2=0,解得a=-;
∴拋物線的解析式為y=-x2+2.

(2)設(shè)向右平移h(h>0)個(gè)單位,則拋物線的解析式為y=-(x-h)2+2,
已知拋物線過(guò)原點(diǎn)則有:0=-×h2+2,
解得h=;
∴向右平移后拋物線的解析式為y=-(x-2+2;
∴其對(duì)稱軸為x=
易知C點(diǎn)坐標(biāo)為(,),
∴OC=
在三角形OAC,OC=,OA=2,AC=1,
∴OA2=OC2+AC2
∴OC⊥AB,
∴以O(shè)為圓心,OC為半徑的圓與直線AB相切.

(3)P(,-)或(,).
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、二次函數(shù)圖象的平移、直線與圓的位置關(guān)系、平行四邊形的判定等知識(shí)點(diǎn).綜合性較強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(17)(解析版) 題型:解答題

(2008•眉山)如圖,E是矩形ABCD的邊DC延長(zhǎng)線上一點(diǎn),連接AE分別交BC,BD于F,G.
(1)圖中有全等三角形嗎?(對(duì)角線分矩形所得兩個(gè)三角形除外)若有,請(qǐng)寫出一對(duì)來(lái);若沒(méi)有,請(qǐng)?zhí)砑右粋(gè)條件(不添加輔助線和不改變圖中字母),使得圖中有全等三角形,并寫出來(lái);
(2)圖中有相似三角形嗎?設(shè)矩形ABCD的周長(zhǎng)為20,對(duì)角線長(zhǎng)為2,求DE的長(zhǎng),使得你找出的一對(duì)相似三角形的相似比為2:3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•眉山)如圖,E是矩形ABCD的邊DC延長(zhǎng)線上一點(diǎn),連接AE分別交BC,BD于F,G.
(1)圖中有全等三角形嗎?(對(duì)角線分矩形所得兩個(gè)三角形除外)若有,請(qǐng)寫出一對(duì)來(lái);若沒(méi)有,請(qǐng)?zhí)砑右粋(gè)條件(不添加輔助線和不改變圖中字母),使得圖中有全等三角形,并寫出來(lái);
(2)圖中有相似三角形嗎?設(shè)矩形ABCD的周長(zhǎng)為20,對(duì)角線長(zhǎng)為2,求DE的長(zhǎng),使得你找出的一對(duì)相似三角形的相似比為2:3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•眉山)如圖,方格紙中△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,將△ABC向右平移5格得到△A1B1C1,再將△A1B1C1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)180°,得到△A1B2C2
(1)在方格紙中畫出△A1B1C1和△A1B2C2
(2)設(shè)B點(diǎn)坐標(biāo)為(-3,-2),B2點(diǎn)坐標(biāo)為(4,2),△ABC與△A1B2C2是否成中心對(duì)稱?若成中心對(duì)稱,請(qǐng)畫出對(duì)稱中心,并寫出對(duì)稱中心的坐標(biāo);若不成中心對(duì)稱,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案