【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
【答案】
【解析】由AB1是邊長為2的等邊三角形ABC的高,利用三線合一得到B1為BC的中點,求出CB1的長,繼而可得△B1CB2是有一個角為30度的直角三角形,同理可知△B2C1B3、△B3C2B4、△B4C3B5、…、都是有一個角為30度的直角三角形,而且后一個的斜邊是前一個30度角所鄰的直角邊,由此即可求得Sn.
∵等邊三角形ABC的邊長為2,AB1⊥BC,
∴∠C=60°,CB1=BB1=1,
又∵∠B1B2C=90°,∴∠CB1B2=30°,
∴CB2=,B1B2=,∴S1=,
同理,Rt△B2C1B3中,B2C1=B1B2=,∴C1B3=×=,B2B3=,
∴S2=,
同理,S3=
…,
∴Sn=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是線段AB的中點,DC⊥BC,作∠EAB=∠B,DE∥BC,連接CE.若,設(shè)△BCD的面積為S,則用S表示△ACE的面積正確的是( )
A.B.3S
C.4SD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線分別交AB,AC于點D,E.
(1)若∠A=40°,求∠EBC的度數(shù);
(2)若AD=5,△EBC的周長為16,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延長AC至E,使CE=AC.
(1)求證:DE=DB;
(2)連接BE,試判斷△ABE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點,點B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△BCD中,∠CBD=90°,BC=BD,點A在CB的延長線上,且BA=BC,點E在直線BD上移動,過點E作射線EF⊥EA,交CD所在直線于點F.
(1)當點E在線段BD上移動時,如圖(1)所示,求證:AE=EF;
(2)當點E在直線BD上移動時,如圖(2)、圖(3)所示,線段AE與EF又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊 中, , , ,點 從點 出發(fā)沿 方向運動,連接 ,以 為邊,在 右側(cè)按如圖方式作等邊 ,當點P從點E運動到點A時,求點F運動的路徑長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,一次函數(shù)與x軸、y軸分別交于點A和點B,A點坐標為(3,0),∠OAB=45°.
(1)求一次函數(shù)的表達式;
(2)點P是x軸正半軸上一點,以P為直角頂點,BP為腰在第一象限內(nèi)作等腰Rt△BPC,連接CA并延長交y軸于點Q.
①若點P的坐標為(4,0),求點C的坐標,并求出直線AC的函數(shù)表達式;
②當P點在x軸正半軸運動時,Q點的位置是否發(fā)現(xiàn)變化?若不變,請求出它的坐標;如果變化,請求出它的變化范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com