【題目】某數(shù)學(xué)興趣小組用高為1.2米的測角儀測量小樹AB的高度,如圖,在距AB一定距離的F處測得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時,又測得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數(shù)據(jù):sin27°=0.45cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64tan50°=1.2

【答案】4.2米

【解析】

首先設(shè)AC=x米,然后由在Rt△ACD中,tan50= ,求得CD,由在Rt△ACE中,tan27°= ,求得CE,又由CE-CD=DE,即可得方程,繼而求得答案

解:設(shè)AC=x米,

在Rt△ACD中,tan50°=,

∴CD= x,

在Rt△ACE中,tan27°=,

∴CE==2x,

∵CE﹣CD=DE,

∴2x﹣x=3.5.

解得x=3.

∴AB=AC+CB=3+1.2=4.2(米).

答:小樹AB的高為4.2米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角三角形ACB,AC=3,BC=4,過直角頂點CCA1AB,垂足為A1,再過A1A1C1BC,垂足為C1;過CA1C1A2AB,垂足為A2,再過A2A2C2BC,垂足為C2;,這樣一直做下去,得到一組線段A1C1,C2A2,,則線段AnCn=___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點AADx軸交拋物線于點D.

(1)求此拋物線的表達式;

(2)點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,求△EAD的面積;

(3)若點P是直線AB下方的拋物線上一動點,當(dāng)點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項,現(xiàn)隨機抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖,請結(jié)合以上信息解答下列問題:

1)求m的值;

2)請補全上面的條形統(tǒng)計圖;

3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為多少度?

4)已知該校共有1200名學(xué)生,請你估計該校約有多少名學(xué)生最喜愛足球活動?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線a≠0)的對稱軸為直線x1,與x軸的交點(,0),(,0),且﹣10,有下列5個結(jié)論:①abc0;②ba+c;③a+bkka+b)(k為常數(shù),且k≠1);④2c3b;⑤若拋物線頂點坐標(biāo)為(1,n),則4acn),其中正確的結(jié)論有( 。﹤.

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).

1)設(shè)每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求ab的值;

2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價為y/kg.根據(jù)以往經(jīng)驗可知:mt的函數(shù)關(guān)系為;yt的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng)0t5050t100時,yt的函數(shù)關(guān)系式;

②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當(dāng)t為何值時,W最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線y=ax2+bx3a(a>0)x軸交于A(1,0)、B兩點,與y軸交于點C.

(1)求點B的坐標(biāo);

(2)P是第四象限內(nèi)拋物線上的一個動點.

①若∠APB=90°,且a<3,求點P縱坐標(biāo)的取值范圍;

②直線PA、PB分別交y軸于點MN求證:為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點A4,4),C(﹣2,﹣2),點B,D在反比例函數(shù)的圖象上,對角線BDAC于點M,交x軸于點N,若,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合)我們把這樣的兩拋物線L1L2互稱為友好拋物線,可見一條拋物線的友好拋物線可以有很多條.

1)如圖2,已知拋物線L3y=2x2-8x+4y軸交于點C,試求出點C關(guān)于該拋物線對稱軸對稱的對稱點D的坐標(biāo);

2)請求出以點D為頂點的L3友好拋物線L4的解析式,并指出L3L4y同時隨x增大而增大的自變量的取值范圍;

3)若拋物y=a1x-m2+n的任意一條友好拋物線的解析式為y=a2x-h2+k,請寫出a1a2的關(guān)系式,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案