【題目】如圖,矩形ABCD中,對角線AC和BD相交于點(diǎn)O,過O作EF⊥AC,交AD于E,交BC于F,連接AF、CE.
(1)求證:四邊形AECF是菱形
(2)若AB=3,BC=4,則菱形AECF的周長?

【答案】
(1)證明:∵四邊形ABCD是矩形,

∴AO=CO,AD∥BC,

∴∠OAE=∠OCF,

∵EF⊥AC,

∴∠AOE=∠COF=90°,

在△AEO和△CFO中,

,

∴△AEO≌△CFO,

∴OE=OF,

∵AO=CO,

∴四邊形AECF是平行四邊形,

∵EF⊥AC,

∴四邊形AECF是菱形


(2)解:∵四邊形ABCD是矩形,

∴AB=CD=3,BC=AD=4,

AE=CE=x,則DE=4﹣x,在直角三角形EDC中由勾股定理可得:CE2=DE2+CD2

即a2=(4﹣a)2+32,

解得:a= ,

∴菱形AECF的周長=4× =12.5


【解析】(1)利用已知條件和矩形的性質(zhì)易證△AEO≌△CFO,進(jìn)而可得四邊形AECF是平行四邊形,又因?yàn)镋F⊥AC,所以可證明四邊形AECF是菱形(2)設(shè)AE=CE=x,則DE=4﹣x,在直角三角形EDC中,利用勾股定理可求出x的值,進(jìn)而可求出菱形的周長.
【考點(diǎn)精析】通過靈活運(yùn)用矩形的性質(zhì),掌握矩形的四個角都是直角,矩形的對角線相等即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中∠C=90°,A=30°,BC=2,點(diǎn)P,Q,R分別是AB,AC,BC上的動點(diǎn),PQ+PR+QR的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠ABC的平分線分別交AD,ACP,Q兩點(diǎn),證明:AP=AQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,(1)∠BED與∠CBE是直線________________被直線________所截形成的________角;

(2)∠A與∠CED是直線________________被直線________所截形成的________角;

(3)∠CBE與∠BEC是直線________________被直線________所截形成的________角;

(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點(diǎn)A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點(diǎn)B(1,3),將△ABC以點(diǎn)B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖像恰好過點(diǎn)D,則k的值為( )

A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線l1;y=ax2+bx+c(a<0)經(jīng)過原點(diǎn),與x軸的另一個交點(diǎn)為B(4,0),點(diǎn)A為頂點(diǎn),且直線OA的解析式為y=x.

(1)如圖1,求拋物線l1的解析式;
(2)如圖2,將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°,得到拋物線l2 , l2與x軸交于點(diǎn)B′,頂點(diǎn)為A′,點(diǎn)P為拋物線l1上一動點(diǎn),連接PO交l2于點(diǎn)Q,連接PA、PA′、QA′、QA.
請求:平行四邊形PAQA′的面積S與P點(diǎn)橫坐標(biāo)x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點(diǎn)H,使得HB=HA′?若存在,請求出點(diǎn)H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生活經(jīng)驗(yàn)表明,靠墻擺放梯子時,若梯子底端離墻的距離約為梯子長度的,則梯子比較穩(wěn)定,如圖,AB為一長度為6米的梯子.

(1)當(dāng)梯子穩(wěn)定擺放時,它的頂端能達(dá)到5.7米高的墻頭嗎?

(2)如圖2,若梯子底端向左滑動(3﹣2)米,那么梯子頂端將下滑多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階.下圖是其中的甲、乙兩段臺階路的示意圖.請你用所學(xué)過的有關(guān)統(tǒng)計(jì)知識(平均數(shù)、中位數(shù)、方差和極差)回答下列問題:

(1)兩段臺階路有哪些相同點(diǎn)和不同點(diǎn)?

(2)哪段臺階路走起來更舒服?為什么?

(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.

圖中的數(shù)字表示每一級臺階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s2,數(shù)據(jù)11,15,18,17,10,19的方差s2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】瑤寨中學(xué)食堂為學(xué)生提供了四種價格的午餐供其選擇,這四種價格分別是:A.3元,B.4元,C.5元,D.6元.為了了解學(xué)生對四種午餐的購買情況,學(xué)校隨機(jī)抽樣調(diào)查了甲、乙兩班學(xué)生某天購買四種午餐的情況,依據(jù)統(tǒng)計(jì)數(shù)據(jù)制成如下的統(tǒng)計(jì)圖表:
甲、乙兩班學(xué)生購買午餐的情況統(tǒng)計(jì)表

品種
人數(shù)
班別

A

B

C

D

6

22

16

6

?

13

25

3


(1)求乙班學(xué)生人數(shù);
(2)求乙班購買午餐費(fèi)用的中位數(shù);
(3)已知甲、乙兩班購買午餐費(fèi)用的平均數(shù)為4.44元,從平均數(shù)和眾數(shù)的角度解答,哪個班購買的午餐價格較高?
(4)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一人,恰好是購買C種午餐的學(xué)生的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案