【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求 的長(zhǎng)(結(jié)果保留π).

【答案】
(1)

證明:連接OD,如圖所示.

∵DF是⊙O的切線,D為切點(diǎn),

∴OD⊥DF,

∴∠ODF=90°.

∵BD=CD,OA=OB,

∴OD是△ABC的中位線,

∴OD∥AC,

∴∠CFD=∠ODF=90°,

∴DF⊥AC


(2)

解:∵∠CDF=30°,

由(1)得∠ODF=90°,

∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.

∵OB=OD,

∴△OBD是等邊三角形,

∴∠BOD=60°,

的長(zhǎng)= π


【解析】(1)連接OD,由切線的性質(zhì)即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位線,根據(jù)三角形中位線的性質(zhì)即可得出,根據(jù)平行線的性質(zhì)即可得出∠CFD=∠ODF=90°,從而證出DF⊥AC;(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再結(jié)合OB=OD可得出△OBD是等邊三角形,根據(jù)弧長(zhǎng)公式即可得出結(jié)論. 本題考查了切線的性質(zhì)、弧長(zhǎng)公式、平行線的性質(zhì)、三角形中位線定理以及等邊三角形的判斷,解題的關(guān)鍵是:(1)求出∠CFD=∠ODF=90°;(2)找出△OBD是等邊三角形.本題屬于中檔題,難度不大,解決該題型題目時(shí),通過(guò)角的計(jì)算找出90°的角是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,紙片ABCD中,AD=5,,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下,將它平移至的位置,拼成四邊形,則四邊形的形狀為_____

A.平行四邊形 B.菱形 C.矩形 D.正方形

(2)如圖2,在(1)中的四邊形中,在EF上取一點(diǎn)P,EP=4,剪下,將它平移至的位置,拼成四邊形。①求證:四邊形是菱形;②求四邊形的兩條對(duì)角線的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長(zhǎng)沙市某家小型“大學(xué)生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬(wàn)件和12.1萬(wàn)件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長(zhǎng)率;
(2)如果平均每人每月最多可投遞0.6萬(wàn)件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問(wèn)至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩名運(yùn)動(dòng)員,選擇一人參加市射擊比賽,在選拔賽上,每人打10發(fā),其中甲的射擊成績(jī)分別為10、8、7、9、8、10、10、9、10、9

計(jì)算甲的射擊成績(jī)的方差;

經(jīng)過(guò)計(jì)算,乙射擊的平均成績(jī)是9,方差為1.4,你認(rèn)為選誰(shuí)去參加市射擊比賽合適,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天,一蔬菜經(jīng)營(yíng)戶用114元從蔬菜批發(fā)市場(chǎng)購(gòu)進(jìn)黃瓜和土豆共40kg到菜市場(chǎng)去賣,黃瓜和土豆這天的批發(fā)價(jià)和零售價(jià)(單位:元/kg)如下表所示:

(1)他當(dāng)天購(gòu)進(jìn)黃瓜和土豆各多少千克?

(2)如果黃瓜和土豆全部賣完,他能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

(1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請(qǐng)直接寫出BE的長(zhǎng);
(2)在旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校要從甲、乙、丙、丁四名學(xué)生中選一名參加“漢字聽(tīng)寫”大賽,選拔中每名學(xué)生的平均成績(jī) 及其方差s2如表所示,如果要選拔一名成績(jī)高且發(fā)揮穩(wěn)定的學(xué)生參賽,則應(yīng)選擇的學(xué)生是( )

8.9

9.5

9.5

8.9

s2

0.92

0.92

1.01

1.03


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)OCAB的平分線分別交BD、BCE、F,作BHAF于點(diǎn)H,分別交ACCD于點(diǎn)G、P,連結(jié)GEGF

1)求證:OAE≌△OBG

2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;

(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案