【題目】下列計(jì)算正確的是( )
A. 3a+2a=5a2 B. 3a-a=3 C. 2a3+3a2=5a5 D. -a2b+2a2b=a2b
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)軸上點(diǎn)A對(duì)應(yīng)的數(shù)為-1,則與A點(diǎn)相距3個(gè)單位長(zhǎng)度的點(diǎn)所對(duì)應(yīng)的數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 三點(diǎn)確定一個(gè)圓 B. 經(jīng)過圓心的直線是圓的對(duì)稱軸
C. 一條弦所對(duì)的圓周角等于圓心角的一半 D. 三角形的外心到三角形三邊距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意正實(shí)數(shù)a、b,因?yàn)?/span>≥0,所以a﹣≥0,所以a+b≥,只有當(dāng)a=b時(shí),等號(hào)成立.
【獲得結(jié)論】在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)a=b時(shí),a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問題:若m>0,只有當(dāng)m= 時(shí),m+有最小值 .
【探索應(yīng)用】如圖,已知A(﹣3,0),B(0,﹣4),P為雙曲線上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的三邊長(zhǎng)為a,b,c,且滿足(a+b)2=c2+2ab,則這個(gè)三角形是( )
A.等邊三角形
B.鈍角三角形
C.直角三角形
D.銳角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式從左到右的變形是因式分解的是( )
A.x2+2x+3=(x+1)2+2
B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣xy+y2=(x﹣y)2
D.2x﹣2y=2(x﹣y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E是BC中點(diǎn),點(diǎn)O在AB上,以O(shè)B為半徑的⊙O經(jīng)過點(diǎn)AE上的一點(diǎn)M,分別交AB,BC于點(diǎn)F,G,連BM,此時(shí)∠FBM=∠CBM.
(1)求證:AM是⊙O的切線;
(2)當(dāng)BC=6,OB:OA=1:2 時(shí),求,AM,AF圍成的陰影部分面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com