【題目】如圖是邊長(zhǎng)為1的正方形網(wǎng)格,△A1B1C1的頂點(diǎn)均在格點(diǎn)上.

(1)在該網(wǎng)格中畫出△A2B2C2(頂點(diǎn)均在格點(diǎn)上),使△A2B2C2∽△A1B1C1;

(2)請(qǐng)寫出(1)中作圖的主要步驟,并說(shuō)明△A2B2C2和△A1B1C1相似的依據(jù).

【答案】(1)如圖所示,△A2B2C2即為所求見(jiàn)解析;(2)見(jiàn)解析.

【解析】

(1)根據(jù)相似三角形的判定,結(jié)合網(wǎng)格特點(diǎn)作圖即可;(2)利用勾股定理得出線段的長(zhǎng),并根據(jù)網(wǎng)格特點(diǎn)得出角的度數(shù),再依據(jù)相似三角形的判定求解可得.

(1)如圖所示,△A2B2C2即為所求;

(2)先取一格點(diǎn)A2,在水平方向上取A2C2=2,再在網(wǎng)格中取一格點(diǎn)B2,使∠C2A2B2=135°,且A2B2,

則△A2B2C2∽△A1B1C1;

∵A1C1=4,∠C1A1B1=135°,A1B1=2,

,∠C2A2B2=∠C1A1B1,

∴△A2B2C2∽△A1B1C1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、EF分別在BC、ABAC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).

(1)當(dāng)AE=8時(shí),求EF的長(zhǎng);

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時(shí),y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC,A、B、C之和為多少?為什么?

A+B+C=180°

理由:作∠ACD=A,并延長(zhǎng)BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y=和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=的圖象上,PC⊥x軸,交y=的圖象于點(diǎn)A,PD⊥y軸,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)P在y=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:△ODB與△OCA的面積相等;PA與PB始終相等;四邊形PAOB的面積不會(huì)發(fā)生變化;其中一定正確的是(  )

A. ①②③ B. C. ②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徵是我國(guó)古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法(注:圓周率=圓的周長(zhǎng)與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來(lái)無(wú)限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說(shuō):割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣.劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑R.此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為6R,如果將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時(shí),如果按照上述方法計(jì)算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3a過(guò)點(diǎn)A(﹣1,0).

(1)求拋物線的對(duì)稱軸;

(2)直線y=x+4與y軸交于點(diǎn)B,與該拋物線對(duì)稱軸交于點(diǎn)C.如果該拋物線與線段BC有交點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:①所有銳角三角函數(shù)值都為正數(shù);②解直角三角形時(shí)只需已知除直角外的兩個(gè)元素;③RtABC中,B=90°,則sin2A+cos2A=1;④RtABC中,A=90°,則tanCsinC=cosC.其中正確的命題有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過(guò)旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30°,若旗桿底點(diǎn)G為BC的中點(diǎn),則矮建筑物的高CD為( )

A. 20米 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DABC的邊AB上一點(diǎn),CEAB,DEAC于點(diǎn)F,若FA=FC

1)求證:四邊形ADCE是平行四邊形;

2)若AEEC,EF=EC=5,求四邊形ADCE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案