【題目】如圖,C、D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點(diǎn)F.
(1)求∠AFE的度數(shù);
(2)求陰影部分的面積(結(jié)果保留π和根號(hào)).
【答案】
(1)解:連接OD,OC,
∵C、D是半圓O上的三等分點(diǎn),
∴ = = ,
∴∠AOD=∠DOC=∠COB=60°,
∴∠CAB=30°,
∵DE⊥AB,
∴∠AEF=90°,
∴∠AFE=90°﹣30°=60°;
(2)解:由(1)知,∠AOD=60°,
∵OA=OD,AB=4,
∴△AOD是等邊三角形,OA=2,
∵DE⊥AO,
∴DE= ,
∴S陰影=S扇形AOD﹣S△AOD= ﹣ × = π﹣ .
【解析】根據(jù)題意連接OD,OC,求得∠AOD=∠DOC=∠COB=60°,再根據(jù)圓周角定理和直角三角形的性質(zhì)即可求∠AFE的度數(shù);
(2)由(1)知,∠AOD=60°,求的△AOD是等邊三角形,再由DE⊥AO,得到DE的值,再根據(jù)扇形和三角形的面積公式即可求出陰影部分的面積.
【考點(diǎn)精析】利用圓周角定理和扇形面積計(jì)算公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:
徑賽項(xiàng)目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用B1、B2表示).
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃用元從廠家購進(jìn)臺(tái)新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號(hào)的電子產(chǎn)品,設(shè)甲、乙型設(shè)備應(yīng)各買入臺(tái),其中每臺(tái)的價(jià)格、銷售獲利如下表:
甲型 | 乙型 | 丙型 | |
價(jià)格(元/臺(tái)) | |||
銷售獲利(元/臺(tái)) |
購買丙型設(shè)備 臺(tái)(用含的代數(shù)式表示) ;
若商場同時(shí)購進(jìn)三種不同型號(hào)的電子產(chǎn)品(每種型號(hào)至少有一臺(tái)),恰好用了元,則商場有哪幾種購進(jìn)方案?
在第題的基礎(chǔ)上,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種購進(jìn)方案?此時(shí)獲利為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列說法中:①過一點(diǎn)有且只有一條直線與已知直線平行;②-0.9是0.81的平方根;③若在平面直角坐標(biāo)系中直線垂直于軸,則直線上所有的點(diǎn)的橫坐標(biāo)相同;④是一個(gè)負(fù)數(shù);⑤0的相反數(shù)和倒數(shù)都是0;⑥;⑦;⑧全體有理數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng).以上真命題的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ ABC、∠ ACB的平分線交于點(diǎn)O。
(1)若∠ABC=40°,∠ ACB=50°,則∠BOC=_______
(2)若∠ABC+∠ ACB=lO0°,則∠BOC="________"
(3)若∠A=70°,則∠BOC=_________
(4)若∠BOC=140°,則∠A=________
(5)你能發(fā)現(xiàn)∠ BOC與∠ A之間有什么數(shù)量關(guān)系嗎?寫出并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,平分,過點(diǎn)作,交于點(diǎn),交于點(diǎn),作的平分線交于點(diǎn),交于點(diǎn),若,下列結(jié)論:①;②;③;④;⑤.其中正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
材料一:分解因式是將一個(gè)多項(xiàng)式化為若干個(gè)整式積的形式的變形,“十字相乘法”可把某些二次三項(xiàng)式分解為兩個(gè)一次式的乘積,具體做法如下:對(duì)關(guān)于,的二次三項(xiàng)式,如圖1,將項(xiàng)系數(shù),作為第一列,項(xiàng)系數(shù),作為第二列,若恰好等于項(xiàng)的系數(shù),那么可直接分解因式為:
示例1:分解因式:
解:如圖2,其中,,而;
∴;
示例2:分解因式:.
解:如圖3,其中,,而;
∴;
材料二:關(guān)于,的二次多項(xiàng)式也可以用“十字相乘法”分解為兩個(gè)一次式的乘積.如圖4,將作為一列,作為第二列,作為第三列,若,,,即第1、2列,第1、3列和第2、3列都滿足十字相乘規(guī)則,則原式分解因式的結(jié)果為:;
示例3:分解因式:.
解:如圖5,其中,,;
滿足,;
∴
請根據(jù)上述材料,完成下列問題:
(1)分解因式: ; ;
(2)若,,均為整數(shù),且關(guān)于,的二次多項(xiàng)式可用“十字相乘法”分解為兩個(gè)一次式的乘積,求出的值,并求出關(guān)于,的方程的整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)得到△COD,當(dāng)OA⊥OC時(shí),在這個(gè)旋轉(zhuǎn)過程中:
(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?多少度?
(2)指出線段AB的對(duì)應(yīng)線段,∠A,∠B的對(duì)應(yīng)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用課余時(shí)間回收廢品,將賣得的錢去購買5本大小不同的兩種筆記本,要求共花錢不超過28元,且購買的筆記本的總頁數(shù)不低于340頁,兩種筆記本的價(jià)格和頁數(shù)如下表.為了節(jié)約資金,小明應(yīng)選擇哪一種購買方案?請說明理由.
大筆記本 | 小筆記本 | |
價(jià)格(元/本) | 6 | 5 |
頁數(shù)(頁/本) | 100 | 60 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com