如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.
(1)連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)如圖二,過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;
(3)如圖三,過點A作半圓O2的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連接PA.證明:PA是半圓O1的切線.
(1)證明:如圖一,

∵O1,O2,F(xiàn)分別是AB,AC,BC邊的中點,
∴O1FAC且O1F=AO2,O2FAB且O2F=AO1,
∴∠BO1F=∠BAC,∠CO2F=∠BAC,
∴∠BO1F=∠CO2F
∵點D和點E分別為兩個半圓圓弧的中點,
∴O1F=AO2=O2E,O2F=AO1=O1D,
∠BO1D=90°,∠CO2E=90°,
∴∠BO1D=∠CO2E.
∴∠DO1F=∠FO2E.
∴△DO1F≌△FO2E;

(2)如圖二,延長CA至G,使AG=AQ,連接BG、AE.

∵點E是半圓O2圓弧的中點,
∴AE=CE=3
∵AC為直徑
∴∠AEC=90°,
∴∠ACE=∠EAC=45°,AC=
AE2+CE2
=3
2
,
∵AQ是半圓O2的切線,
∴CA⊥AQ,
∴∠CAQ=90°,
∴∠ACE=∠AQE=45°,∠GAQ=90°,
∴AQ=AC=AG=3
2

同理:∠BAP=90°,AB=AP=5
2

∴CG=6
2
,∠GAB=∠QAP,
∴△AQP≌△AGB.
∴PQ=BG,
∵∠ACB=90°,
∴BC=
AB2-AC2
=4
2
,
∴BG=
GC2+BC2
=2
26
,
∴PQ=2
26


(3)如圖三,設(shè)直線FA與PQ的垂足為M,過C作CS⊥MF于S,過B作BR⊥MF于R,連接DR、AD、DM.

∵F是BC邊的中點,∴S△ABF=S△ACF
∴BR=CS,
由(2)已證∠CAQ=90°,AC=AQ,
∴∠2+∠3=90°
∵FM⊥PQ,∴∠2+∠1=90°,
∴∠1=∠3,
同理:∠2=∠4,
∴△AMQ≌△CSA,
∴AM=CS,
∴AM=BR,
同(2)可證AD=BD,∠ADB=∠ADP=90°,
∴∠ADB=∠ARB=90°,∠ADP=∠AMP=90°
∴A、D、B、R四點在以AB為直徑的圓上,A、D、P、M四點在以AP為直徑的圓上,
且∠DBR+∠DAR=180°,
∴∠5=∠8,∠6=∠7,
∵∠DAM+∠DAR=180°,
∴∠DBR=∠DAM
∴△DBR≌△DAM,
∴∠5=∠9,
∴∠RDM=90°,
∴∠5+∠7=90°,
∴∠6+∠8=90°,
∴∠PAB=90°,
∴PA⊥AB,又AB是半圓O1直徑,
∴PA是半圓O1的切線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點F,∠ABC的平分線交AD于點E,連接BD,CD.
(1)求證:BD=CD;
(2)請判斷B,E,C三點是否在以D為圓心,以DB為半徑的圓上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,從⊙O外一點P引圓的切線PA和PB,切點分別是A和B,如果∠APB=70°,那么這兩條切線所夾劣弧AB的度數(shù)是(  )
A.110°B.70°C.55°D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,半徑OC⊥AB,D為AB延長線上一點,過D作⊙O的切線,E為切點,連接CE交AB于點F.
(1)求證:DE=DF;
(2)連AE,若OF=1,BF=3,求DE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,一個圓球放置在V型架中.圖2是它的平面示意圖,CA、CB都是⊙O的切線,切點分別是A、B,如果⊙O的半徑為2
3
cm,且AB=6cm,求∠ACB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA為⊙O的切線,A為切點,PO交⊙O于點B,PA=8,OA=6,則tan∠APO的值為( 。
A.
3
4
B.
3
5
C.
4
5
D.
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA與⊙O相切,切點為A,PO交⊙O于點C,點B是優(yōu)弧CBA上一點,若∠ABC=32°,則∠P的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是劣弧BC的中點,過點P作⊙O的切線交AB延長線于點D.
(1)求證:DPBC;
(2)求DP的長.

查看答案和解析>>

同步練習(xí)冊答案