【題目】閱讀下列材料:
材料一:最大公約數(shù)是指兩個(gè)或多個(gè)整數(shù)共有的約數(shù)中最大的一個(gè).我們將兩個(gè)整數(shù)a、b的最大公約數(shù)表示為(a,b),如(12,18)=6;(7,9)=1.
材料二:求7x+3y=11的一組整數(shù)解,主要分為三個(gè)步驟:
第一步,用x表示y,得y;
第二步,找一個(gè)整數(shù)x,使得11﹣7x是3的倍數(shù),為更容易找到這樣的x,將11﹣7x變形為12﹣9x+2x﹣1=3(4﹣3x)+2x﹣1,即只需2x﹣1是3的倍數(shù)即可,為此可取x=2;
第三步,將x=2代入y,得y=﹣1.∴是原方程的一組整數(shù)解.
材料三:若關(guān)于x,y的二元一次方程ax+by=c(a,b,c均為整數(shù))有整數(shù)解,則它的所有整數(shù)解為(t為整數(shù)).
利用以上材料,解決下列問題:
(1)求方程(15,20)x+(4,8)y=99的一組整數(shù)解;
(2)求方程(15,20)x+(4,8)y=99有幾組正整數(shù)解.
【答案】(1);(2)原方程有5組正整數(shù)解.
【解析】
(1)先化簡(jiǎn)原方程,由材料可求解; (2)先求出原方程的整數(shù)解,根據(jù)材料即可求解.
(1)∵(15,20)=5,(4,8)=4,
∴原方程變形為:5x+4y=99,
∴x,
∴99﹣4y是5的倍數(shù),
∴當(dāng)y=1時(shí),x=19,
∴是原方程的解;
(2)∵5x+4y=99的有正整數(shù)解,
方程所有整數(shù)解為(t為整數(shù)).
其中
方程所有正整數(shù)解記為(t為整數(shù)).
當(dāng)時(shí),正整數(shù)解為:,
當(dāng)時(shí),正整數(shù)解為:,
當(dāng)時(shí),正整數(shù)解為:,
當(dāng)時(shí),正整數(shù)解為:,
∴原方程有5組正整數(shù)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新冠狀病毒的影響下,某學(xué)校積極響應(yīng)政府號(hào)召,開展了“停課不停學(xué)”網(wǎng)上授課工作,為了網(wǎng)上授課工作順利開展和取得良好成效,該校在授課第一周和授課第二周分別隨機(jī)抽取部分學(xué)生進(jìn)行“網(wǎng)上授課教學(xué)效果反饋”網(wǎng)上調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,調(diào)查顯示:兩次調(diào)查反饋教學(xué)效果為“較差”人數(shù)相等,第二周反饋教學(xué)效果為“很好”人數(shù)比例比第一周多,請(qǐng)根據(jù)調(diào)查顯示和統(tǒng)計(jì)圖中的信息解決下列問題:
在圖1中,表示“較好”的扇形圓心角的度數(shù)為_ 度,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
若把調(diào)查反饋教學(xué)效果“很好”和“較好”作為網(wǎng)上授課成效良好的標(biāo)準(zhǔn),該校大約有名學(xué)生,請(qǐng)估計(jì)授課第二周學(xué)校網(wǎng)上授課成效良好的學(xué)生人數(shù);
有一位家長(zhǎng)認(rèn)為,兩次調(diào)查反饋授課效果為“較差”人數(shù)相等,因此學(xué)校在一周后調(diào)整的措施并沒有提高網(wǎng)上授課效果,這位家長(zhǎng)分析數(shù)據(jù)的方法合理嗎?請(qǐng)結(jié)合統(tǒng)計(jì)圖,對(duì)這位家長(zhǎng)分析數(shù)據(jù)的方法及學(xué)校在一周后調(diào)整措施對(duì)網(wǎng)上授課效果的影響談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB是半圓O的直徑,點(diǎn)E是CD的中點(diǎn),BE交半圓O于點(diǎn)F,連接DF.
(1)求證:DF是半圓O的切線;
(2)若AB =8,AD =3,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期,某國(guó)遭遇了近年來最大的經(jīng)濟(jì)危機(jī),導(dǎo)致該國(guó)股市大幅震蕩,昨天某支股票累計(jì)賣出的數(shù)量和交易時(shí)間之間的關(guān)系如圖中虛線所示,累計(jì)買入的數(shù)量和交易時(shí)間之間的關(guān)系如圖中實(shí)線所示,其中點(diǎn)A是實(shí)線和虛線的交點(diǎn),點(diǎn)C是BE的中點(diǎn),CD與橫軸平行,則下列關(guān)于昨天該股票描述正確的是( )
A.交易時(shí)間在3.5h時(shí)累計(jì)賣出的數(shù)量為12萬手
B.交易時(shí)間在1.4h時(shí)累計(jì)賣出和累計(jì)買入的數(shù)量相等
C.累計(jì)賣出的數(shù)量和累計(jì)買入的數(shù)量相差1萬手的時(shí)刻有5個(gè)
D.從點(diǎn)A對(duì)應(yīng)的時(shí)刻到點(diǎn)C對(duì)應(yīng)的時(shí)刻,平均每小時(shí)累計(jì)賣出的數(shù)量小于買入的數(shù)量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=+bx+c與x軸交于點(diǎn)A、,與y軸交于點(diǎn),直線經(jīng)過B、C兩點(diǎn). 拋物線的頂點(diǎn)為D.
(1)求拋物線和直線的解析式;
(2)判斷△BCD的形狀并說明理由.
(3)如圖②,若點(diǎn)E是線段BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),過E點(diǎn)作EF⊥x軸于點(diǎn)F,EF交線段BC于點(diǎn)G,當(dāng)△ECG是直角三角形時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,經(jīng)過點(diǎn),,且與邊相切于點(diǎn),連接.
(1)如圖,求證:;
(2)如圖,連接,點(diǎn)是圓上一點(diǎn)平分,過點(diǎn)作交的延長(zhǎng)線于點(diǎn).
①求證:是的切線;
②若正方形的邊長(zhǎng)為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB外一定點(diǎn),點(diǎn)P線段AB上一動(dòng)點(diǎn),在直線OP右側(cè)作Rt△OPQ,使得∠OPQ=30°,已知AB=3,當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是邊上的一點(diǎn),是的中點(diǎn),過點(diǎn)作的平行線交的延長(zhǎng)線于點(diǎn),且,連接.
(1)求證:是的中點(diǎn);
(2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com