【題目】在平面直角坐標(biāo)系中,拋物線C1:y=x+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3.0),與y軸交于C0,-3

1)求拋物線C1的表達(dá)式;

2)分別寫(xiě)出拋物線C1關(guān)于B點(diǎn),關(guān)于A點(diǎn)的對(duì)稱(chēng)拋物線C2 C3的函數(shù)表達(dá)式

3)設(shè)C1的頂點(diǎn)為D,C2x軸的另一個(gè)交點(diǎn)為A1頂點(diǎn)為D1,C3x軸的另一個(gè)交點(diǎn)為B1,頂點(diǎn)為D2,在以AB、D、A1B1、D1D2這七個(gè)點(diǎn)中的四個(gè)點(diǎn)為頂點(diǎn)的四邊形中,求面積最大的四邊形的面積。

【答案】1)拋物線C1的表達(dá)式為:y=x-2x-3;(2)拋物線C2表達(dá)式為:y2=-x2+10x-21;拋物線C3表達(dá)式為:y3= -x2-6x-5;(348.

【解析】

1)將點(diǎn)B(30),C0-3)代入y=x+bx+c求出b,c即可得到拋物線C1的表達(dá)式;

2)求出A點(diǎn)坐標(biāo),可得AB=4,根據(jù)關(guān)于點(diǎn)成中心對(duì)稱(chēng)的圖形的性質(zhì),可求出拋物線C2, C3的函數(shù)表達(dá)式;

3)求出A、B、D、A1、B1、D1D2這七個(gè)點(diǎn)的坐標(biāo),根據(jù)圖形,計(jì)算幾個(gè)面積較大的四邊的面積,比較即可得到面積最大的四邊形的面積.

解:(1)將點(diǎn)B(30),C0,-3)代入y=x+bx+c可得:,

解得:,

∴拋物線C1的表達(dá)式為:y=x-2x-3;

2)令y=x-2x-3=0,解得:x1=3,x2=-1

A-1,0),

AB=4,

∴拋物線C2過(guò)點(diǎn)(30)和點(diǎn)(7,0

設(shè)拋物線C2解析式為:y2=a(x-3)(x-7),

∵拋物線C2與拋物線C1關(guān)于B點(diǎn)對(duì)稱(chēng),

a=-1,即拋物線C2解析式為:y2=-(x-3)(x-7)=-x2+10x-21,

同理可得:拋物線C3解析式為:y3=-(x+5)(x+1)= -x2-6x-5

3)如圖,由題意得:A-1,0),B3,0),A17,0),B1-50),

∵拋物線C1y=x-2x-3=(x-1)2-4,

D1,-4),

同理:D154),D2-3,4),

S梯形B1 D2 D1 A1=

S四邊形B1D2DD1 = S四邊形A1D1D2D =S平行四邊形B1D2D1B+SB1DB=,

S四邊形B1DA1D1 = S四邊形A1DB1D2 =SB1DA1+ SB1A1D1=,

(注:面積明顯較小的四邊形面積不予計(jì)算)

綜上所述,面積最大的四邊形的面積是48.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形 ABCO 的一邊 OA x 軸上,,反比例函數(shù)過(guò)菱形的頂點(diǎn) C AB 邊上的中點(diǎn)E,則k的值為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為滿足市場(chǎng)需求,某超市在五月初五端午節(jié)來(lái)臨前夕,購(gòu)進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.

1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?

3)為穩(wěn)定物價(jià),有關(guān)管理部門(mén)限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷(xiāo)售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量(件與銷(xiāo)售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

(2)求每天的銷(xiāo)售利潤(rùn)W(元與銷(xiāo)售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷(xiāo)售價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB=9,點(diǎn)C為線段AB上一點(diǎn),AC=3,點(diǎn)D為平面內(nèi)一動(dòng)點(diǎn),且滿足CD=3,連接BDBD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90DE,連接BE、AE,AE的最大值為 ________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購(gòu)買(mǎi)了前往各地的車(chē)票,如圖是用來(lái)制作完整的車(chē)票種類(lèi)和相應(yīng)數(shù)量的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

若去丙地的車(chē)票占全部車(chē)票的,則總票數(shù)為______ 張,去丁地的車(chē)票有______

若公司采用隨機(jī)抽取的方式發(fā)車(chē)票,小胡先從所有的車(chē)票中隨機(jī)抽取一張所有車(chē)票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車(chē)票的概率是多少?

若有一張車(chē)票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來(lái)確定給誰(shuí),其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請(qǐng)問(wèn)這個(gè)規(guī)則對(duì)雙方是否公平?若公平請(qǐng)說(shuō)明理由;若不公平,請(qǐng)通過(guò)計(jì)算說(shuō)明對(duì)誰(shuí)更有利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,tanACB=2,D在△ABC內(nèi)部,且AD=CD,ADC=90°,連接BD,若△BCD的面積為10,則AD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)PQ(兩點(diǎn)可以重合)在x軸上,點(diǎn)P的橫坐標(biāo)為m,點(diǎn)Q的橫坐標(biāo)為n,若平面內(nèi)的點(diǎn)M的坐標(biāo)為(n|mn|),則稱(chēng)點(diǎn)MPQ的跟隨點(diǎn).

1)若m0,

①當(dāng)n3時(shí),P,Q的跟隨點(diǎn)的坐標(biāo)為   ;

②寫(xiě)出P,Q的跟隨點(diǎn)的坐標(biāo);(用含n的式子表示);

③記函數(shù)ykx1(﹣1≤x≤1,k≠0)的圖象為圖形G,若圖形G上不存在PQ的跟隨點(diǎn),求k的取值范圍;

2)⊙A的圓心為A0,2),半徑為1,若⊙A上存在P,Q的跟隨點(diǎn),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢市政府大力扶持大學(xué)生創(chuàng)業(yè),童威在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每盞20元的護(hù)眼臺(tái)燈,銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(盞)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似地看作一次函數(shù):y=﹣10x+500

1)設(shè)每月獲得的利潤(rùn)為w(元),求wx的關(guān)系式.

2)如果想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?

3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元.如果童威想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案