【題目】如圖,在A處的正東方向有一港口B.某巡艇從A處沿著北偏東60°方向巡邏,到達C處時接到命令,立刻在C處沿東南方向以20海里/小時的速度行駛3小時到達港口B.若取結果保留一位小數(shù),則A,B間的距離為()

A.42.3海里B.73.5海里C.115.8海里D.119.9海里

【答案】C

【解析】

過點CCDAB于點D,根據(jù)題意可得,∠ACD=60°,∠BCD=45°,BC=20×3=60,然后根據(jù)銳角三角函數(shù)即可求出A,B間的距離.

解:如圖,過點CCDAB于點D

根據(jù)題意可知: ACD=60°,∠BCD=45°BC=20×3=60,

∴在RtBCD中,CD=BD=BC=,

RtACD中,AD=CDtan60°=

AB=AD+BD=115.8(海里).

答:A,B間的距離約為115.8海里.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場用14500元購進甲、乙兩種礦泉水共500箱,礦泉水的成本價與銷售價如表(二)所示:

類別

成本價(元/箱)

銷售價(元/箱)

25

35

35

48

求:(1)購進甲、乙兩種礦泉水各多少箱?

(2)該商場售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控.甲、乙兩個工廠生產同一種防護口罩,甲廠每天比乙廠多生產口罩5萬只,甲廠生產該種口罩40萬只所用時間與乙廠生產該種口罩15萬只所用時間相同,甲、乙兩個工廠每天分別生產該種口罩多少萬只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知坐標平面上有一頂點為的拋物線,點坐標為,則可設此拋物線的頂點式為______;若此拋物線又與直線交于、兩點,且為正三角形,則可求得此拋物線與軸的交點坐標為________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)與直線y=﹣x2相交于A(﹣2,0),Bm,﹣6)兩點,且拋物線經過點C 50).點P是直線下方的拋物線上異于A、B的動點.過點PPDx軸于點D,交直線于點E

1)求拋物線的解析式;

2)連結PA、PBBD,當SADBSPAB時,求SPAB;

3)是否存在點P,使得△PBE為直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某醫(yī)藥公司有A倉、B倉兩個原材料倉庫和甲、乙兩個加工廠,其中A合、B倉共原材料22000噸,從A倉、B倉運往甲加工廠、乙加工廠的運費價如下表:

若將A倉的原材全部運往乙加T所需的費用與B倉的原材料全部運往甲加廠所需費用相同,

1A倉、B倉各有原材料多少噸?

2)若甲加工廠需要從AB兩倉調運9000噸原材料,乙加工廠需要從AB兩倉調運13000原材料,且從A倉運送到甲加工廠的原材料最多9000噸,請問醫(yī)藥公司怎么調運可使總運費最少?求出最少運費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝超市購進單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設銷售單價為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關系式,并寫出自變量x的取值范圍.

2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?

3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識

的普及情況,隨機調查了部分學生,調查結果分為非常了解”“了解”“了解較少”“不了解四類,

并將檢查結果繪制成下面兩個統(tǒng)計圖.

(1)本次調查的學生共有__________人,估計該校1200 名學生中不了解的人數(shù)是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DRtABC斜邊AB的中點,點E在邊AC上.△A'B′C′與△ABC關于直線BE對稱,連結A′C.且∠CA′C'90°.若AC4,BC3.則AE的長為_____

查看答案和解析>>

同步練習冊答案