(2005•茂名)如圖,已知直線L與⊙O相切于點(diǎn)A,直徑AB=6,點(diǎn)P在L上移動(dòng),連接OP交⊙O于點(diǎn)C,連接BC并延長BC交直線L于點(diǎn)D.
(1)若AP=4,求線段PC的長;
(2)若△PAO與△BAD相似,求∠APO的度數(shù)和四邊形OADC的面積(答案要求保留根號(hào)).

【答案】分析:(1)在Rt△OAP中,根據(jù)勾股定理可將OP的長求出,減去半徑OC的長即為PC的長;
(2)如圖,根據(jù)△PAO∽△BAD,可知∠2=∠APO,再根據(jù)∠1=2∠2,利用三角形的內(nèi)角可將∠APO的度數(shù)求出;四邊形OADC的面積可通過△ABD與△BOC的面積之差求得,也可由△OAP與△CDP的面積之差求得.
解答:解:(1)∵l與⊙○相切于點(diǎn)A,
∴∠A=90°
∴OP2=OA2+AP2
∵OA=OC=AB=3,AP=4
∴OP2=32+42
∴OP=5
∴PC=5-3=2;

(2)∵△PAO∽△BAD,且∠1>∠2,∠A=∠A=90°
∴∠2=∠APO.
又∠1=2∠2,∠A=90°,
∴∠1=2∠APO,
∴∠1+∠APO=90°
即3∠APO=90°
∴∠APO=30°
在Rt△BAD中,∠2=∠APO=30°
∴AD=6tan30°=6×
方法一:過點(diǎn)O作OE⊥BC于點(diǎn)E
∵∠2=30°,BO=3
∴OE=,BE=3×cos30°=
∴BC=2BE=3
∴S四邊形OADC=S△BAD-S△BOC=AB×AD-BC×OE
=×6×2
=;

方法二:在Rt△OAP中,AP=6tan60°=3,OP=2OA=6
∴DP=AP-AD=3,PC=OP-OC=6-3=3
過點(diǎn)C作CF⊥AP于F
∵∠CPF=30°
∴CF=PC=
∴S四邊形OADC=S△OAP-S△CDP=AP×OA-DP×CF
=
=
點(diǎn)評(píng):此題考查了勾股定理的計(jì)算,相似三角形的性質(zhì)與判定,不規(guī)則圖形的面積的計(jì)算等知識(shí),綜合性比較強(qiáng),其中不規(guī)則圖形的面積可通過幾個(gè)規(guī)則圖形面積相加或相減求得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省茂名市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形認(rèn)識(shí)初步》(02)(解析版) 題型:選擇題

(2005•茂名)如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是( )

A.90°
B.80°
C.70°
D.60°

查看答案和解析>>

同步練習(xí)冊答案