(2002•河南)如圖,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′=   
【答案】分析:根據(jù)旋轉(zhuǎn)不變性,可得BP=BP′,∠PBP′=90°,進(jìn)而根據(jù)勾股定理可得PP′的值.
解答:解:根據(jù)題意將△ABP繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)能與△CBP'重合,
結(jié)合旋轉(zhuǎn)的性質(zhì)可得BP=BP′,∠PBP′=90°,
根據(jù)勾股定理,可得PP′==3
故答案為3
點(diǎn)評(píng):此題考查了同學(xué)們的閱讀分析能力和應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力,根據(jù)旋轉(zhuǎn)不變性,得到∠PBP′=90°,是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(01)(解析版) 題型:填空題

(2002•河南)如圖,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(08)(解析版) 題型:填空題

(2002•河南)如圖,AB為⊙O的直徑,P點(diǎn)在AB的延長(zhǎng)線上,PM切⊙O于點(diǎn)M.若OA=a,PM=,那么△PMB的周長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•河南)如圖所示,在Rt△ABC中,AB=AC,∠A=90°,點(diǎn)D為BC上任一點(diǎn),DF⊥AB于F,DE⊥AC于E,M為BC的中點(diǎn),試判斷△MEF是什么形狀的三角形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年河南省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•河南)如圖,AB為⊙O的直徑,P點(diǎn)在AB的延長(zhǎng)線上,PM切⊙O于點(diǎn)M.若OA=a,PM=,那么△PMB的周長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年河南省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•河南)如圖,AB∥CD,直線EF分別交AB、CD于E、F,EG平分∠BEF,若∠1=72°,則∠2=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案