分析 (1)由已知條件可以得出AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,從而得出∠DAM=∠PAN,可以得出△ADM≌△APN,就可以得出結論.
(2)首先證得△BPM∽△CAP,然后由相似三角形的對應邊成比例,求得BM=-$\frac{1}{2}$x2+x,繼而求得答案.
(3)首先連接DE,分別交AB,AC于點G,H,連接PG,由∠BAD=15°,由∠DAP=60°可以得出∠PAG=45°.由已知條件可以得出四邊形ADPE是菱形,就有DO垂直平分AP,得到GP=AG,就有∠PAG=∠APG=45°,得出∠PGA=90°,設BG=t,在Rt△BPG中∠APG=60°,就可以求出BP=2t,PG=$\sqrt{3}$t,從而求得t的值,即可以求出結論.
解答 解:(1)證明:∵△ABC、△APD和△APE是等邊三角形,
∴AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,
∴∠DAM=∠PAN.
在△ADM和△APN中,
∵$\left\{\begin{array}{l}{∠DAM=∠PAN}\\{AD=AP}\\{∠ADM=∠APN}\end{array}\right.$,
∴△ADM≌△APN(ASA),
∴AM=AN.
(2)∵△ABC、△ADP是等邊三角形,
∴∠B=∠C=∠DAP=∠BAC=60°,
∴∠DAM=∠PAC,
∵∠ADM=∠B,∠DMA=∠BMP,
∴180°-∠ADM-∠DMA=180°-∠B-∠BMP,
∴∠DAM=∠BPM,
∴∠BPM=∠NAP,
∴△BPM∽△CAP,
∴$\frac{BM}{CP}$=$\frac{BP}{CA}$,
∵等邊△ABC的邊長為2,BP=x,
∴CP=2-x,CA=2,
∴$\frac{BM}{2-x}=\frac{x}{2}$,
∴BM=-$\frac{1}{2}$x2+x=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$,
∴當x=1時,線段BM的長度最大;
(3)如圖,連接DE,分別交AB,AC于點G,H,連接PG,
∵∠BAD=15°,
∵∠DAP=60°,
∴∠PAG=45°.
∵△APD和△APE是等邊三角形,
∴四邊形ADPE是菱形,
∴DO垂直平分AP,
∴GP=AG,
∴∠PAG=∠APG=45°,
∴∠PGA=90°.
設BG=t,在Rt△BPG中,∠ABP=60°,
∴BP=2t,PG=$\sqrt{3}$t,
∴AG=PG=$\sqrt{3}$t,
∴$\sqrt{3}$t+t=2,
解得t=$\sqrt{3}$-1,
∴x=2t=2$\sqrt{3}$-2.
點評 此題屬于三角形的綜合題.考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及二次函數(shù)的最值問題.注意準確作出輔助線是解此題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ASA | B. | SAS | C. | AAS | D. | SSS |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com