【題目】已知點(diǎn)A(﹣1,1)、B(4,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點(diǎn)G,過點(diǎn)G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點(diǎn)E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點(diǎn).點(diǎn)P從點(diǎn)C出發(fā),沿射線CD方向勻速運(yùn)動(dòng),速度為每秒
個(gè)單位長度;同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā),沿x軸正方向勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長度.點(diǎn)M是直線PQ與拋物線的一個(gè)交點(diǎn),當(dāng)運(yùn)動(dòng)到t秒時(shí),QM=2PM,直接寫出t的值.
【答案】
(1)解:將點(diǎn)A(﹣1,1)、B(4,6)代入y=ax2+bx中,
,解得: ,
∴拋物線的解析式為y= x2﹣ x.
(2)證明:設(shè)直線AF的解析式為y=kx+m,
將點(diǎn)A(﹣1,1)代入y=kx+m中,即﹣k+m=1,
∴k=m﹣1,
∴直線AF的解析式為y=(m﹣1)x+m.
聯(lián)立直線AF和拋物線解析式成方程組,
,解得: , ,
∴點(diǎn)G的坐標(biāo)為(2m,2m2﹣m).
∵GH⊥x軸,
∴點(diǎn)H的坐標(biāo)為(2m,0).
∵拋物線的解析式為y= x2﹣ x= x(x﹣1),
∴點(diǎn)E的坐標(biāo)為(1,0).
設(shè)直線AE的解析式為y=k1x+b1,
將A(﹣1,1)、E(1,0)代入y=k1x+b1中,
,解得: ,
∴直線AE的解析式為y=﹣ x+ .
設(shè)直線FH的解析式為y=k2x+b2,
將F(0,m)、H(2m,0)代入y=k2x+b2中,
,解得: ,
∴直線FH的解析式為y=﹣ x+m.
∴FH∥AE.
(3)設(shè)直線AB的解析式為y=k0x+b0,
將A(﹣1,1)、B(4,6)代入y=k0x+b0中,
,解得: ,
∴直線AB的解析式為y=x+2.
當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),點(diǎn)P的坐標(biāo)為(t﹣2,t),點(diǎn)Q的坐標(biāo)為(t,0).
當(dāng)點(diǎn)M在線段PQ上時(shí),過點(diǎn)P作PP′⊥x軸于點(diǎn)P′,過點(diǎn)M作MM′⊥x軸于點(diǎn)M′,則△PQP′∽△MQM′,如圖2所示.
∵QM=2PM,
∴ = = ,
∴QM′= ,MM′= t,
∴點(diǎn)M的坐標(biāo)為(t﹣ , t).
又∵點(diǎn)M在拋物線y= x2﹣ x上,
∴ t= ×(t﹣ )2﹣ (t﹣ ),
解得:t= ;
當(dāng)點(diǎn)M在線段QP的延長線上時(shí),
同理可得出點(diǎn)M的坐標(biāo)為(t﹣4,2t),
∵點(diǎn)M在拋物線y= x2﹣ x上,
∴2t= ×(t﹣4)2﹣ (t﹣4),
解得:t= .
綜上所述:當(dāng)運(yùn)動(dòng)時(shí)間為 秒、 秒、 秒或 秒時(shí),QM=2PM.
【解析】(1)利用待定系數(shù)法把A、B坐標(biāo)代入解析式即可;(2)要證坐標(biāo)系中的兩直線平行,可求兩直線的解析式,斜率k相等,兩直線平行,常數(shù)b可不必求出;(3)須動(dòng)手畫出點(diǎn)M與線段PQ的兩種相對位置,分類討論,斜線段QM與PM的比,通過作垂線,轉(zhuǎn)化為x軸上水平線段的比,構(gòu)建方程,求出t.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,點(diǎn)D為AC的中點(diǎn),點(diǎn)E,F(xiàn)分別是線段AB,CB上的動(dòng)點(diǎn),且∠EDF=90°,若ED的長為m,則△BEF的周長是(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司共有A,B,C三個(gè)部門,根據(jù)每個(gè)部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計(jì)表和扇形圖
各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計(jì)表
部門 | 員工人數(shù) | 每人所創(chuàng)的年利潤/萬元 |
A | 5 | 10 |
B | b | 8 |
C | c | 5 |
(1)①在扇形圖中,C部門所對應(yīng)的圓心角的度數(shù)為
②在統(tǒng)計(jì)表中,b= , c=
(2)求這個(gè)公司平均每人所創(chuàng)年利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC=EC,∠BCE=∠ACD,如果只添加一個(gè)條件,使△ABC ≌ △DEC,則添加的條件不能為( )
A. ∠B=∠E B. AC=DC C. ∠A=∠D D. AB=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點(diǎn)E.
(1)如圖1,若∠ABC=∠ADC=90°,求證:EDEA=ECEB;
(2)如圖2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖3,另一組對邊AB、DC的延長線相交于點(diǎn)F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下面不能判斷是平行四邊形的是( )
A. ∠B=∠D,∠BAD=∠BCD
B. AB∥CD,AD=BC
C. ∠B+∠DAB=180°,∠B+∠BCD=180°
D. AB∥CD,AB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為矩形ABCD對角線的交點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若AB=3,BC=4,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一.為了增強(qiáng)居民的節(jié)水意識(shí),某市自來水公司對居民用水采用以戶為單位分段計(jì)費(fèi)辦法收費(fèi).即一個(gè)月用水10 t以內(nèi)(包括10 t)的用戶,每噸收水費(fèi)a元;一個(gè)月用水超過10 t的用戶,10 t水仍按每噸a元收費(fèi),超過10 t的部分,按每噸b(b>a)元收費(fèi).設(shè)一戶居民月用水x t,應(yīng)交水費(fèi)y元,y與x之間的函數(shù)關(guān)系如圖所示.
(1)求a的值;某戶居民上月用水8 t,應(yīng)交水費(fèi)多少元?
(2)求b的值,并寫出當(dāng)x>10時(shí),y與x之間的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com