【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(-,0)、(0,-1),把點(diǎn)A繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)135°得點(diǎn)C,若點(diǎn)C在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)D在y軸上,點(diǎn)E在反比例函數(shù)y=的圖象上,且以點(diǎn)A、B、D、E為頂點(diǎn)的四邊形是平行四邊形.請(qǐng)畫(huà)出滿足題意的示意圖并在示意圖的下方直接寫(xiě)出相應(yīng)的點(diǎn)D、E的坐標(biāo).
【答案】(1)y=;(2)示意圖見(jiàn)解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
【解析】
(1)根據(jù)旋轉(zhuǎn)和直角三角形的邊角關(guān)系可以求出點(diǎn)C的坐標(biāo),進(jìn)而確定反比例函數(shù)的關(guān)系式;
(2)分兩種情況進(jìn)行討論解答,①點(diǎn)E在第三象限,由題意可得E的橫坐標(biāo)與點(diǎn)A的相同,將A的橫坐標(biāo)代入反比例函數(shù)的關(guān)系式,可求出縱坐標(biāo),得到E的坐標(biāo),進(jìn)而得到AE的長(zhǎng),也是BD的長(zhǎng),因此D在B的上方和下方,即可求出點(diǎn)D的坐標(biāo),②點(diǎn)E在第一象限,由三角形全等,得到E的橫坐標(biāo),代入求出縱坐標(biāo),確定E的坐標(biāo),進(jìn)而求出點(diǎn)D的坐標(biāo).
(1)由旋轉(zhuǎn)得:OC=OA=,∠AOC=135°,
過(guò)點(diǎn)C作CM⊥y軸,垂足為M,則∠COM=135°-90°=45°,
在Rt△OMC中,∠COM=45°,OC=,
∴OM=CM=1,
∴點(diǎn)C(1,1),代入y=得:k=1,
∴反比例函數(shù)的關(guān)系式為:y=,
答:反比例函數(shù)的關(guān)系式為:y=
(2)①當(dāng)點(diǎn)E在第三象限反比例函數(shù)的圖象上,如圖1,圖2,
∵點(diǎn)D在y軸上,AEDB是平行四邊形,
∴AE∥DB,AE=BD,AE⊥OA,
當(dāng)x=-時(shí),y==-,
∴E(-,-)
∵B(0,-1),BD=AE=,
當(dāng)點(diǎn)D在B的下方時(shí),
∴D(0,-1-)
當(dāng)點(diǎn)D在B的上方時(shí),
∴D(0,-1+),
②當(dāng)點(diǎn)E在第一象限反比例函數(shù)的圖象上時(shí),如圖3,
過(guò)點(diǎn)E作EN⊥y軸,垂足為N,
∵ABED是平行四邊形,
∴AB=DE,AB=DE,
∴∠ABO=∠EDO,
∴△AOB≌△END (AAS),
∴EN=OA=,DN=OB=1,
當(dāng)x=時(shí),代入y=得:y=,
∴E(,),
∴ON=,OD=ON+DN=1+,
∴D(0,1+)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在一次社會(huì)實(shí)踐活動(dòng)中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會(huì)實(shí)踐活動(dòng)的效果,學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)“最喜歡的景點(diǎn)”進(jìn)行了問(wèn)卷調(diào)查,并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下不完整的統(tǒng)計(jì)圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請(qǐng)結(jié)合統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次活動(dòng)抽查了 名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,最喜歡植物園的學(xué)生人數(shù)所對(duì)應(yīng)扇形的圓心角是 度;
(4)該校此次參加社會(huì)實(shí)踐活動(dòng)的學(xué)生有720人,請(qǐng)求出最喜歡烈士陵園的人數(shù)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為lcm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為lcm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q.F,當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問(wèn)題:
(1)求菱形ABCD的面積;
(2)當(dāng)t=1時(shí),求QF長(zhǎng);
(3)是否存在某一時(shí)刻t,使四邊形APFD是平行四邊形?若存在,求出t值,若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)△DEF的面積為s(cm2),試用含t的代數(shù)式表示S,并求t為何值時(shí),△DEF的面積與△BPC的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°經(jīng)過(guò)點(diǎn)B的直線l(l不與直線AB重合)與直線BC的夾角等于∠ABC,分別過(guò)點(diǎn)C、A做直線l的垂線,垂足分別為點(diǎn)D、E.
(1)問(wèn)題發(fā)現(xiàn):
①若∠ABC=30°,如圖①,則= ;
②∠ABC=45°,如圖②,則= ;
(2)拓展探究:
當(dāng)0°<∠ABC<90°,的值有無(wú)變化?請(qǐng)僅就圖③的情形給出證明.
(3)問(wèn)題解決:
若直線CE、AB交于點(diǎn)F,=,CD=4,請(qǐng)直接寫(xiě)出線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.
請(qǐng)解決下列問(wèn)題:
寫(xiě)出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠將地處A,B兩地的兩個(gè)小工廠合成一個(gè)大廠,為了方便A,B兩地職工的聯(lián)系,企業(yè)準(zhǔn)備在相距2km的A,B兩地之間修一條筆直的公路(即圖中的線段AB),經(jīng)測(cè)量在A地的北偏東60°方向,B地的北偏西45°方向的C處有一以C點(diǎn)為中心,半徑為0.7km的圓形公園,則修筑的這條公路會(huì)不會(huì)穿過(guò)公園?為什么?(提示:判斷以點(diǎn)C為圓心的圓與AB的關(guān)系)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機(jī)抽取一張卡片,鐘華從剩余的三張卡片中隨機(jī)抽取一張,求兩張卡片上數(shù)字之積.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.
(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)進(jìn)行促銷(xiāo),購(gòu)物滿額即可獲得1次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)袋中裝有紅色、黃色、白色三種除顏色外都相同的小球,從袋子中摸出1個(gè)球,紅色、黃色、白色分別代表一、二、三等獎(jiǎng).
(1)若小明獲得1次抽獎(jiǎng)機(jī)會(huì),小明中獎(jiǎng)是 事件;(填隨機(jī)、必然、不可能)
(2)小明觀察一段時(shí)間后發(fā)現(xiàn),平均每8個(gè)人中會(huì)有1人抽中一等獎(jiǎng),2人抽中二等獎(jiǎng),若袋中共有24個(gè)球,請(qǐng)你估算袋中白球的數(shù)量;
(3)在(2)的條件下,如果在抽獎(jiǎng)袋中減少3個(gè)白球,那么抽獎(jiǎng)一次恰好抽中一等獎(jiǎng)的概率是多少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com