精英家教網 > 初中數學 > 題目詳情
已知三個關于y的方程:y2-y+a=0,(a-1)y2+2y+1=0和(a-2)y2+2y-1=0,若其中至少有兩個方程有實根,則實數a的取值范圍是( 。
A、a≤2
B、a≤
1
4
或1≤x≤2
C、a≥1
D、
1
4
≤a≤1
分析:分別計算三個方程的△,△1=1-4a;△2=4-(a-1)=4(2-a);△3=4+4(a-2)=4(a-1);然后分別令它們大于或等于0,最后找出至少符合兩個不等式的a的取值范圍即可.
解答:解:y2-y+a=0,△1=1-4a;(a-1)y2+2y+1=0,△2=4-(a-1)=4(2-a);(a-2)y2+2y-1=0,△3=4+4(a-2)=4(a-1);
當方程y2-y+a=0有實根,則△1=1-4a≥0,即a≤
1
4
;
當方程(a-1)y2+2y+1=0有實根,則△2=4-(a-1)=4(2-a)≥0,即a≤2;
當方程(a-2)y2+2y-1=0有實根,則△3=4+4(a-2)=4(a-1)≥0,即a≥1.
要三個方程中,其中至少有兩個方程有實根,即a至少要滿足兩個不等式,所以a≤
1
4
或1≤a≤2.
故選B.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數)根的判別式.當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.同時考查了不等式組的解.
練習冊系列答案
相關習題

科目:初中數學 來源:三點一測叢書九年級數學上 題型:044

已知三個關于x的方程:①x2-2(m-1)x+m2=0;②x2-2(m+1)x-m(m+3)=0;③x2+2mx+m2-2m+4=0.它們至少有一個方程有實數根,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知三個關于x的方程x2-x+m=0,(m-1)x2+2x+1=0和(m-2)x2+2x-1=0,若其中至少兩個方程有實根,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

已知三個關于y的方程:y2-y+a=0,(a-1)y2+2y+1=0和(a-2)y2+2y-1=0,若其中至少有兩個方程有實根,則實數a的取值范圍是


  1. A.
    a≤2
  2. B.
    數學公式或1≤a≤2
  3. C.
    a≥1
  4. D.
    數學公式

查看答案和解析>>

科目:初中數學 來源:新課標九年級數學競賽培訓第02講:判別式(解析版) 題型:選擇題

已知三個關于y的方程:y2-y+a=0,(a-1)y2+2y+1=0和(a-2)y2+2y-1=0,若其中至少有兩個方程有實根,則實數a的取值范圍是( )
A.a≤2
B.或1≤x≤2
C.a≥1
D.

查看答案和解析>>

同步練習冊答案