【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形),ABC的頂點A,B的坐標(biāo)分別為:(﹣4,3),(-2,﹣1).

1)請在圖中作出平面直角坐標(biāo)系并寫出點C的坐標(biāo);

2)請作出將△ABC向下平移2個單位長度,再向右平移3個單位長度后的;并寫出點C′的坐標(biāo).

【答案】1)圖見解析,C點坐標(biāo)為:(-1,1);(2)圖見解析,C′點坐標(biāo)為:(2-1.

【解析】

1)根據(jù)題意作出直角坐標(biāo)系,然后寫出點C的坐標(biāo);

2)分別作出點A、B、C向下平移2個單位長度,再向右平移3個單位長度后的點,然后順次連接,并寫出點C′的坐標(biāo).

解:(1)如圖所示:

C-1,1);

2)如圖所示:

C′2,-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠A=45°,AB=4,AD=2,MAD邊的中點,NAB邊上一動點,將線段M繞點M逆時針旋轉(zhuǎn)90MN′,連接N′B,N′C,則N′B+N′C的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點F,G,P分別是DE,BC,CD的中點,連接PF,PG.

(1)如圖①,α=90°,點DAB上,則∠FPG= °;

(2)如圖②,α=60°,點D不在AB上,判斷∠FPG的度數(shù),并證明你的結(jié)論;

(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點A旋轉(zhuǎn),則PF長度的最大值為 ;PF長度的最小值為 ;

27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD//BC,,,,,動點MB點出發(fā)沿線段BC以每秒2個單位長度的速度向C運動;動點N同時從A點出發(fā)沿線段AB以每秒1個單位長度的速度向B運動,其中一點到達終點時,則兩點同時停止運動.設(shè)運動的時間為t秒,當(dāng)MNB等腰直角三角形時,t的值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M為拋物線x軸的焦點為A(-3,0),B(1,0),與y軸交于點C,連結(jié)AM,AC,點D為線段AM上一動點(不與A重合),以CD為斜邊在CD上側(cè)作等腰RtDEC,連結(jié)AE,OE.

(1)求拋物線的解析式及頂點M的坐標(biāo);

(2)求解AD:OE的值;

(3)當(dāng)OEC為直角三角形時,求AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1y=2x+1與坐標(biāo)軸交于AC兩點,直線l2y=x2與坐標(biāo)軸交于B、D兩點,兩線的交點為P點,

1)求出點P的坐標(biāo);

2)求△APB的面積;

3)在x軸上是否存在點Q,使得△OPQ的面積等于6,若存在,求出Q點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災(zāi)區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運1 000件帳篷與乙種貨車裝運800件帳篷所用車輛相等.

(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;

(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運,甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點D、E的邊BC上,,.求證:

1;

2)若,直接寫出圖中除外所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進價為15萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當(dāng)該型號汽車售價定為25萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出1輛.

1)當(dāng)售價為22萬元/輛時,求平均每周的銷售利潤.

2)若該店計劃平均每周的銷售利潤是90萬元,為了盡快減少庫存,求每輛汽車的售價.

查看答案和解析>>

同步練習(xí)冊答案