【題目】如圖,正方形AEFG的邊AE放置在正方形ABCD的對角線AC上,EF與CD交于點(diǎn)M,得四邊形AEMD,且兩正方形的邊長均為2,則兩正方形重合部分(陰影部分)的面積為(
A.﹣4+4
B.4 +4
C.8﹣4
D. +1

【答案】A
【解析】解:∵四邊形ABCD是正方形, ∴∠D=90°,∠ACD=45°,AD=CD=2,
則SACD= ADCD= ×2×2=2;
AC= AD=2 ,
則EC=2 ﹣2,
∵△MEC是等腰直角三角形,
∴SMEC= MEEC= (2 ﹣2)2=6﹣4
∴陰影部分的面積=SACD﹣SMEC=2﹣(6﹣4 )=4 ﹣4.
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將四根長度相等的細(xì)木條首尾相接,用釘子釘成四邊形ABCD,轉(zhuǎn)動(dòng)這個(gè)四邊形,使它形狀改變,當(dāng)∠C=90°時(shí),測得AC=2 ,當(dāng)∠C=120°時(shí),如圖2,AC=(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中, , , ,DAB邊的中點(diǎn),EAC邊上一點(diǎn),聯(lián)結(jié)DE,過點(diǎn)DBC邊于點(diǎn)F,聯(lián)結(jié)EF

(1)如圖1,當(dāng)時(shí),求EF的長;

(2)如圖2,當(dāng)點(diǎn)EAC邊上移動(dòng)時(shí), 的正切值是否會(huì)發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;

(3)如圖3,聯(lián)結(jié)CDEF于點(diǎn)Q,當(dāng)是等腰三角形時(shí),請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,我市正在積極創(chuàng)建文明城市,交通部門一再提醒司機(jī):為了安全,請勿超速,并再進(jìn)一步完善各類監(jiān)測系統(tǒng),如圖,在某公路直線路段MN內(nèi)限速60千米/小時(shí),為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點(diǎn)C,從觀測點(diǎn)C測得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD交于點(diǎn)O,AOE=4DOE,AOE的余角比∠DOE10°(題中所說的角均是小于平角的角).

(1)求∠AOE的度數(shù);

(2)請寫出∠AOC在圖中的所有補(bǔ)角;

(3)從點(diǎn)O向直線AB的右側(cè)引出一條射線OP,當(dāng)∠COP=AOE+DOP時(shí),求∠BOP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲從商販A處購買了若干斤西瓜,又從商販B處購買了若干斤西瓜.A、B兩處所購買的西瓜重量之比為32,然后將買回的西瓜以從A、B兩處購買單價(jià)的平均數(shù)為單價(jià)全部賣給了乙結(jié)果發(fā)現(xiàn)他賠錢了,這是因?yàn)椋ā 。?/span>

A. 商販A的單價(jià)大于商販B的單價(jià)

B. 商販A的單價(jià)等于商販B的單價(jià)

C. 商版A的單價(jià)小于商販B的單價(jià)

D. 賠錢與商販A、商販B的單價(jià)無關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1l2,直線l3和直線l1、l2交于點(diǎn)CD,點(diǎn)P是直線l3上一動(dòng)點(diǎn)

1)如圖1,當(dāng)點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí),PACAPB,PBD之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由.

2)當(dāng)點(diǎn)PCD點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出PAC,APB,PBD之間的數(shù)量關(guān)系,不必寫理由.

查看答案和解析>>

同步練習(xí)冊答案