【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,作EG∥FH,分別與對角線BD交于點G、H,連接EH,F(xiàn)G.
(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠FBH=∠EDG,
∵AE=CF,
∴BF=DE,
∵EG∥FH,
∴∠OHF=∠OGE,
∴∠BHF=∠DGE,
在△BFH和△DEG中,
,
∴BFH≌△DEG(AAS)
(2)解:四邊形EGFH是菱形;理由如下:
連接DF,如圖所示:
由(1)得:BFH≌△DEG,
∴FH=EG,
又∵EG∥FH,
∴四邊形EGFH是平行四邊形,
∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,
∴△EDO≌△FBO,
∴OB=OD,
∵BF=DF,OB=OD,
∴EF⊥BD,
∴EF⊥GH,
∴四邊形EGFH是菱形.
【解析】(1)首先依據(jù)平行四邊形的性質(zhì)可得到AD∥BC,AD=BC,OB=OD,接下來,依據(jù)平行線的性質(zhì)證明∠FBH=∠EDG,∠OHF=∠OGE,依據(jù)等角的補角相等可得到∠BHF=∠DGE,求出BF=DE,最后由AAS進行證明即可;
(2)首先證明四邊形EGFH是平行四邊形,接下來,在依據(jù)等腰三角形的性質(zhì)得出EF⊥GH,最后,依據(jù)對角線相互垂直的平行四邊形是菱形進行證明即可.
【考點精析】本題主要考查了菱形的判定方法和矩形的性質(zhì)的相關(guān)知識點,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=4,點E是AB邊上的動點,過點B作直線CE的垂線,垂足為F,當(dāng)點E從點A運動到點B時,點F的運動路徑長為( )
A.
B.2
C. π
D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某森林公園從正門到側(cè)門有一條公路供游客運動,甲徒步從正門出發(fā)勻速走向側(cè)門,出發(fā)一段時間開始休息,休息了0.6小時后仍按原速繼續(xù)行走.乙與甲同時出發(fā),騎自行車從側(cè)門勻速前往正門,到達正門后休息0.2小時,然后按原路原速勻速返回側(cè)門.圖中折線分別表示甲、乙到側(cè)門的路程y(km)與甲出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.根據(jù)圖象信息解答下列問題.
(1)求甲在休息前到側(cè)門的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.
(2)求甲、乙第一次相遇的時間.
(3)直接寫出乙回到側(cè)門時,甲到側(cè)門的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用4400元購進A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤2800元(毛利潤=售價﹣進價),這兩種服裝的進價,標(biāo)價如表所示.
類型價格 | A型 | B型 |
進價(元/件) | 60 | 100 |
標(biāo)價(元/件) | 100 | 160 |
(1)請利用二元一次方程組求這兩種服裝各購進的件數(shù);
(2)如果A種服裝按標(biāo)價的9折出售,B種服裝按標(biāo)價的8折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD=BC且AC⊥BD,點E,F(xiàn),G,H,P,Q分別是AB,BC,CD,DA,AC,BD的中點.
求證:(1)四邊形EFGH是矩形;
(2)四邊形EQGP是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見下表:
海拔高度(單位:米) | 0 | 100 | 200 | 300 | 400 | … |
平均氣溫(單位:℃) | 22 | 21.5 | 21 | 20.5 | 20 | … |
(1)若海拔高度用x(米)表示,平均氣溫用y(℃)表示,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若某種植物適宜生長在18℃~20℃(包含18℃,也包含20℃)山區(qū),請問該植物適宜種植在海拔為多少米的山區(qū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=﹣1,求該拋物線與x軸公共點的坐標(biāo);
(Ⅱ)若a=b=1,且當(dāng)﹣1<x<1時,拋物線與x軸有且只有一個公共點,求c的取值范圍;
(Ⅲ)若a+b+c=0,且x1=0時,對應(yīng)的y1>0;x2=1時,對應(yīng)的y2>0,試判斷當(dāng)0<x<1時,拋物線與x軸是否有公共點?若有,請證明你的結(jié)論;若沒有,闡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、C分別在x軸上、y軸上,CB//OA,OA=8,若點B的坐標(biāo)為(a,b),且b=.
(1)直接寫出點A、B、C的坐標(biāo);
(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;
(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名工人同時加工同一種零件,現(xiàn)根據(jù)兩人7天產(chǎn)品中每天出現(xiàn)的次品數(shù)情況繪制成如下不完整的統(tǒng)計圖和表,依據(jù)圖、表信息,解答下列問題:
相關(guān)統(tǒng)計量表:
量數(shù) 人 | 眾數(shù) | 中位數(shù) | 平均數(shù) | 方差 |
甲 |
|
| 2 |
|
乙 | 1 | 1 | 1 |
次品數(shù)量統(tǒng)計表:
天數(shù) 人 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 1 | 0 | 2 | 1 | 1 | 0 |
|
(1)補全圖、表.
(2)判斷誰出現(xiàn)次品的波動。
(3)估計乙加工該種零件30天出現(xiàn)次品多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com