20.(1)已知32x+1=27,求x的值;
(2)已知2a=5,2b=20,2c=8,求a,b,c之間的數(shù)量關(guān)系.

分析 (1)把27化為33,然后列方程求解;
(2)根據(jù)題目所給的值可得,2a×2c÷2=2b,然后求出a、b、c的關(guān)系.

解答 解:(1)∵32x+1=27=33,
∴2x+1=3,
∴x=1;
(2)∵2a×2c÷2=20,2b=20,
∴2a×2c÷2=2b
即2a+c-1=2b,
∴a+c-1=b.

點評 本題考查了冪的乘方和積的乘方以及同底數(shù)冪的乘法,解答本題的關(guān)鍵是掌握冪的乘方和積的乘方以及同底數(shù)冪的乘法法則.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

10.1米長的彩帶,第1次剪去$\frac{1}{3}$,第二次剪去剩下的$\frac{1}{3}$,如此剪下去,剪7次后剩下的彩帶長(不計損耗)為( 。
A.($\frac{1}{3}$)6B.($\frac{1}{3}$)7C.($\frac{2}{3}$)6D.($\frac{2}{3}$)7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.閱讀材料:已知分式$\frac{3n+8}{n+1}$,化簡后結(jié)果是整數(shù),符合一切整數(shù)的n有哪些?
解:∵$\frac{3n+8}{n+1}$=$\frac{3n+3+5}{n+1}$=3+$\frac{5}{n+1}$.
∴只要求出$\frac{5}{n+1}$是整數(shù),則n+1是5的約數(shù),即n+1=5,n+1=1,n+1=-5,n+1=1.
∴n1=4,n2=0,n3=-6,n4=2.
(1)已知分式$\frac{2n+9}{n+1}$,化簡后結(jié)果是整數(shù),符合要求的整數(shù)n有哪些?
(2)已知分式$\frac{3{n}^{2}+7n+7}{n+2}$,化簡后結(jié)果是整數(shù),符合要求的整數(shù)n有哪些?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.學校的籃球數(shù)比排球數(shù)的2倍少3個,籃球數(shù)與排球數(shù)的比是3:2,則籃球有9個,排球有6個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.(1)填寫下表:
a-4-3-2-101234
(a+2)(a-1)104-2-2 01018
(2)觀察上表,小明發(fā)現(xiàn)“a>1或a<-2時,代數(shù)式(a+2)(a-1)的值是正數(shù)”,你認為小明的結(jié)論正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.如圖,$\widehat{BD}$=$\widehat{CE}$,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.作圖:在圖中,過點P作垂線PC⊥OA,PD⊥OB,垂足分別為點C,D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.計算$\sqrt{6{x}^{3}}÷2\sqrt{\frac{x}{3}}$的結(jié)果是( 。
A.2$\sqrt{2}$xB.xC.6$\sqrt{2}$xD.$\frac{2\sqrt{2}}{3}$x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.如圖,已知△ABC中AB=6,AC=4,AD為角平分線,DE⊥AB,DE=2,則△ABC的面積為( 。
A.6B.8C.10D.9

查看答案和解析>>

同步練習冊答案