分析 (1)用含x的代數(shù)式表示出鑲紙邊后矩形的長和寬,根據(jù)矩形的面積公式即可得出y關(guān)于x的函數(shù)解析式,結(jié)合題意標(biāo)明x的取值范圍即可;
(2)根據(jù)二次函數(shù)的性質(zhì)確定在自變量的取值范圍內(nèi)函數(shù)的單調(diào)性,由此即可解決最值問題.
解答 解:(1)鑲金色紙邊后風(fēng)景畫的長為(80+2x)cm,寬為(50+2x)cm,
∴y=(80+2x)•(50+2x)=4x2+260x+4000(1≤x≤2).
(2)∵二次函數(shù)y=4x2+260x+4000的對(duì)稱軸為x=-$\frac{260}{8}$=-$\frac{65}{2}$,
∴在1≤x≤2上,y隨x的增大而增大,
∴當(dāng)x=2時(shí),y取最大值,最大值為4536.
答:金色紙邊的寬為2cm時(shí),這幅掛圖的面積最大,最大面積的值為4536cm2.
點(diǎn)評(píng) 本題考查了二次函數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)結(jié)合矩形的面積找出y關(guān)于x的函數(shù)解析式;(2)根據(jù)二次函數(shù)的性質(zhì)解決最值問題.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)數(shù)量關(guān)系找出函數(shù)關(guān)系式是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com