27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.
分析:本題首先根據(jù)三角形的內(nèi)角和定理求出∠ABC+∠ACB=180°-∠BAC=180°-60°=120°;再依據(jù)三角形的外角性質(zhì)定理即三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和,得到∠1+∠2+∠3+∠4=∠ABC+∠ACB=120°.
解答:解:∵△ABC中,∠BAC=60°,
∴∠ABC+∠ACB=180°-∠BAC=180°-60°=120°.
∵∠ABC與∠ACB分別是△ABD與△ACE的外角,
∴∠ABC=∠1+∠2,∠ACB=∠3+∠4.
∴∠1+∠2+∠3+∠4=∠ABC+∠ACB=120°.
點評:本題主要考查三角形的外角性質(zhì)及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握三角形的外角性質(zhì)定理即三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案