【題目】ABC,ACB=90°,AB為斜邊作等腰直角三角形ABD且點(diǎn)D與點(diǎn)C在直線AB的兩側(cè),連接CD

1如圖1,ABC=30°CAD的度數(shù)為________

2已知AC=1,BC=3

依題意將圖2補(bǔ)全;

CD的長(zhǎng);

3用等式表示線段AC,BCCD之間的數(shù)量關(guān)系直接寫出即可).

【答案】1105°;(2①答案見解析;②CD=2;(3AC+BC=CD

【解析】試題分析:(1)先判斷出∠CAD=∠DBE,再利用等腰直角三角形求出∠ABD=45°,進(jìn)而求出∠CBD,最后用鄰補(bǔ)角即可得出結(jié)論;
(2)①根據(jù)題意及基本作圖即可補(bǔ)全圖形;
②構(gòu)造出△ACD≌△BED,進(jìn)而判斷出△CDE是等腰直角三角形,再利用等腰直角三角形的性質(zhì)即可得出解;

構(gòu)造出△BDH≌△ADG,進(jìn)而判斷出△CDH是等腰直角三角形,再利用等腰直角三角形的性質(zhì)即可得出結(jié)論;
(3)同(2)的方法即可得出結(jié)論.

試題解析:

(1)∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DBE+∠CBD═180°,
∴∠CAD=∠DBE.
∵△ADB是等腰直角三角形,
∴∠ABD=45°,
∵∠ABC=30°,
∴∠CBD=∠ABD+∠ABC=75°,
∴∠CAD=∠DBE=180°-75°=105°
故答案為:105°.
(2)①補(bǔ)全圖形,如圖所示.

②如圖2,
∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DBE+∠CBD═180°,
∴∠CAD=∠DBE.
∵DA=DB,AC=BE,
∴△ACD≌△BED.


∴DC=DE,∠ADC=∠BDE.
∴∠CDE=90°.
∴△CDE為等腰直角三角形.
∵AC=1,BC=3,
∴CE=4.
∴CD=2

如圖2,


∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DAG+∠CAD═180°,
∴∠CBD=∠DAG.
∵DA=DB,∠DGA=∠DHB=90°,
∴△BDH≌△ADG.
∴DH=DG,BH=AG.
∴∠DCH=∠DCG=45°.
∴△CHD為等腰直角三角形.
∵AC=1,BC=3,
∴CH=2.
∴CD=2

(3)AC+BC=CD,
理由:如圖2,
∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DBE+∠CBD═180°,
∴∠CAD=∠DBE.
∵DA=DB,AC=BE,
∴△ACD≌△BED.
∴DC=DE,∠ADC=∠BDE.
∴∠CDE=90°.
∴△CDE為等腰直角三角形.
∴CE= CD,
∵CE=BC+BE=BC+AC.
即:AC+BCCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方法回顧

在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:

第一步添加輔助線:如圖1,在△ABC中,延長(zhǎng)DE (DE分別是AB、AC的中點(diǎn))到點(diǎn)F,使得EFDE,連接CF;

第二步證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到DEBCDEBC

(2)問題解決

如圖2,在正方形ABCD中,EAD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG2,DF3,∠GEF90°,求GF的長(zhǎng).

(3)拓展研究

如圖3,在四邊形ABCD中,∠A100°,∠D110°,EAD的中點(diǎn),GF分別為AB、CD邊上的點(diǎn),若AG4DF,∠GEF90°,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長(zhǎng)線)于點(diǎn)MN.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN

(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BMDNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DNMN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則正方形ABCD的面積為( 。

A. B. C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)的趣味無處不在,在學(xué)習(xí)數(shù)學(xué)的過程中,小明發(fā)現(xiàn)了有規(guī)律的等式:

;

;

;

……

(1)從計(jì)算過程中找出規(guī)律可知

;

=

(2)計(jì)算:(結(jié)果用含n的式子表示)

(3)對(duì)于算式:

①計(jì)算出算式的值(結(jié)果用乘方表示);

②直接寫出結(jié)果的個(gè)位數(shù)字是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,DBC的中點(diǎn),DEBC,垂足為D,交AB于點(diǎn)E,且BE2EA2AC2,

(1)求證:∠A90°.

(2)DE3BD4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過建設(shè)者三年多艱苦努力地施工,貫通我市A、B兩地又一條高速公路全線通車.已知原來A地到B地普通公路長(zhǎng)150km,高速公路路程縮短了30km,如果一輛小車從A地到B地走高速公路的平均速度可以提高到原來的1.5倍,需要的時(shí)間可以比原來少用1小時(shí).求小車走普通公路的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是以AB為直徑的ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:∠DAC=DCE;

(2)若AE=ED=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,某超市從一樓到二樓的電梯的長(zhǎng)為16. 50 m,坡角32°.

(1)求一樓與二樓之間的高度 (精確到0. 01 m) ;

(2)電梯每級(jí)的水平級(jí)寬均是0.25m,如圖②,小明跨上電梯時(shí),該電梯以每秒上升2級(jí)

的高度運(yùn)行,10s后他上升了多少米?

(精確到0. 01 m,參考數(shù)據(jù): )

查看答案和解析>>

同步練習(xí)冊(cè)答案