【題目】如圖,已知在中,,以BC為直徑作交于點(diǎn),為AC邊的中點(diǎn),連接.
(1)求證:是的切線.
(2)①若AC=3,AE=1,求的半徑;
②當(dāng) 時(shí),四邊形是正方形.
【答案】(1)詳見解析;(2)①②
【解析】
(1)連接OE、CE,由圓周角定理得出∠BEC=90°,則∠AEC=90°,由直角三角形斜邊上的中線性質(zhì)得出AD=CD=DE,由等腰三角形的性質(zhì)得出∠DEC=∠DCE,∠OCE=∠OEC,證出∠OED=90°,即可得出結(jié)論;
(2)①由勾股定理求出CE=2,證△OCE∽△DAE,得出比例式,求出OC的長(zhǎng)即可;
②證△ABC是等腰直角三角形,得出∠ABC=45°,證四邊形OCDE是矩形,由OC=OE,即可得出四邊形OCDE是正方形.
(1)證明:連接OE、CE,如圖所示:
∵BC是⊙O的直徑,
∴∠BEC=90°,
∴∠AEC=90°,
∵D是AC的中點(diǎn),
∴DE=AC=AD=CD,
∴∠DEC=∠DCE,
∵OC=OE,
∴∠OCE=∠OEC,
∵∠ACB=90°,
∴∠DEC+∠OEC=∠DCE+∠OCE=∠ACB=90°,
∴∠OED=90°,即OE⊥DE,
∵E為⊙O上的點(diǎn),
∴DE是⊙O的切線;
(2)解:①∵AC=3,
∴AD=DE=AC=,
∵∠AEC=90°,
∴CE=,
∵∠BEC=90°,
∴∠CBE+∠OCE=90°,
∵∠ACB=90°,
∴∠CBE+∠DAE=90°,
∴∠OCE=∠DAE,
∵AD=DE,OC=OE,
∴∠OCE=∠OEC=∠DAE=∠DEA,
∴△OCE∽△DAE,
∴,
即,
解得:OC=,
故半徑長(zhǎng)為;
②當(dāng)∠A=45°時(shí),四邊形OCDE是正方形;理由如下:
∵∠A=45°,
∴△ABC是等腰直角三角形,
∴∠ABC=45°,
∵OB=OE,
∴∠OBE=∠OEB=45°,
∴∠COE=∠OBE+∠OEB=45°+45°=90°,
∵∠ACB=90°,∠OED=90°,
∴四邊形OCDE是矩形,
∵OC=OE,
∴四邊形OCDE是正方形;
故答案為:45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax﹣3a(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC,直線y=﹣x與該拋物線交于E,F兩點(diǎn).
(1)求拋物線的解析式.
(2)P是直線EF下方拋物線上的一個(gè)動(dòng)點(diǎn),作PH⊥EF于點(diǎn)H,求PH的最大值.
(3)以點(diǎn)C為圓心,1為半徑作圓,⊙C上是否存在點(diǎn)D,使得△BCD是以CD為直角邊的直角三角形?若存在,直接寫出D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)圖案均由邊長(zhǎng)相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個(gè)圖案中白色正方形比黑色正方形多________個(gè).(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有上禾三秉,益實(shí)六斗,當(dāng)下禾十秉.下禾五秉,益實(shí)一斗,當(dāng)上禾二秉.問上、下禾實(shí)一秉各幾何?”其大意是:今有上等稻子三捆,若打出來的谷子再加六斗,則相當(dāng)于十捆下等稻子打出來的谷子.有下等稻子五捆,若打出來的谷子再加一斗,則相當(dāng)于兩捆上等稻子打?qū)鐏淼墓茸?/span>.問上等、下等稻子每捆能打多少斗谷子?設(shè)上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根據(jù)題意,可列方程組為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)M是邊BC上的一點(diǎn)(不與B、C重合),點(diǎn)N在CD邊的延長(zhǎng)線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,MN與邊AD交于點(diǎn)E.
(1)求證:AM=AN;
(2)如果∠CAD=2∠NAD,求證:AM2=ACAE;
(3)MN和AC相交于O點(diǎn),若BM=1,AB=3,試猜想線段OM,ON的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC和正方形DEFG按如圖所示擺放,其中 D,E兩點(diǎn)分別在AB,BC上,且BD=DE.若AB=12,DE=4,則△EFC的面積為( )
A.4B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲車從A地出發(fā)勻速駛向B地,到達(dá)B地后,立即按原路原速返回A地;乙車從B地出發(fā)沿相同路線勻速駛向A地,出發(fā)t(t>0)小時(shí)后,乙車因故在途中停車1小時(shí),然后繼續(xù)按原速駛向A地,乙車在行駛過程中的速度是80千米/時(shí),甲車比乙車早1小時(shí)到達(dá)A地,兩車距各自出發(fā)地的路程y千米與甲車行駛時(shí)間x小時(shí)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息,解答下列問題:
(1)寫出甲車行駛的速度,并直接在圖中的( 。﹥(nèi)填上正確的數(shù);
(2)求甲車從B地返回A地的過程中,y與x的函數(shù)解析式(不需要寫出自變量x的取值范圍);
(3)若從乙車出發(fā)至甲車到達(dá)A地,兩車恰好有兩次相距80千米,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為的直徑,AC,BC分別交于點(diǎn)E,D,,.現(xiàn)給出以下四個(gè)結(jié)論:①;②;③;④.其中正確結(jié)論的序號(hào)是________.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)i=1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹CD.測(cè)得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com