【題目】(問(wèn)題提出):分解因式:(12x2+2xy3x3y;(2a2b2+4a4b

(問(wèn)題探究):某數(shù)學(xué)“探究學(xué)習(xí)”小組對(duì)以上因式分解題目進(jìn)行了如下探究:

探究1:分解因式:(12x2+2xy3x3y

該多項(xiàng)式不能直接使用提取公因式法,公式法進(jìn)行因式分解.于是仔細(xì)觀察多項(xiàng)式的特點(diǎn).甲發(fā)現(xiàn)該多項(xiàng)式前兩項(xiàng)有公因式2x,后兩項(xiàng)有公因式﹣3,分別把它們提出來(lái),剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.

解:2x2+2xy3x3y=(2x2+2xy)﹣(3x+3y)=2xx+y)﹣3x+y)=(x+y)(2x3

另:乙發(fā)現(xiàn)該多項(xiàng)式的第二項(xiàng)和第四項(xiàng)含有公因式y,第一項(xiàng)和第三項(xiàng)含有公因式x,把y、x提出來(lái),剩下的是相同因式(2x3),可以繼續(xù)用提公因式法分解.

解:2x2+2xy3x3y=(2x23x)+(2xy3y)=x2x3)+y2x3)=(2x3)(x+y

探究2:分解因式:(2a2b2+4a4b

該多項(xiàng)式亦不能直接使用提取公因式法,公式法進(jìn)行因式分解,于是若將此題按探究1的方法分組,將含有a的項(xiàng)分在一組即a2+4aaa+4),含有b的項(xiàng)一組即﹣b24b=﹣bb+4),但發(fā)現(xiàn)aa+4)與﹣bb+4)再?zèng)]有公因式可提,無(wú)法再分解下去.于是再仔細(xì)觀察發(fā)現(xiàn),若先將a2b2看作一組應(yīng)用平方差公式,其余兩項(xiàng)看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達(dá)到分解因式的目的.

解:a2b2+4a4b=(a2b2)+(4a4b)=(a+b)(ab)+4ab)=(ab)(4+a+b

(方法總結(jié)):對(duì)不能直接使用提取公因式法,公式法進(jìn)行分解因式的多項(xiàng)式,我們可考慮把被分解的多項(xiàng)式分成若干組,分別按“基本方法”即提取公因式法和運(yùn)用公式法進(jìn)行分解,然后,綜合起來(lái),再?gòu)目傮w上按“基本方法”繼續(xù)進(jìn)行分解,直到分解出最后結(jié)果.這種分解因式的方法叫做分組分解法.

分組分解法并不是一種獨(dú)立的因式分解的方法,而是通過(guò)對(duì)多項(xiàng)式進(jìn)行適當(dāng)?shù)姆纸M,把多項(xiàng)式轉(zhuǎn)化為可以應(yīng)用“基本方法”分解的結(jié)構(gòu)形式,使之具有公因式,或者符合公式的特點(diǎn)等,從而達(dá)到可以利用“基本方法”進(jìn)行分解因式的目的.

(學(xué)以致用):嘗試運(yùn)用分組分解法解答下列問(wèn)題:

1)分解因式:

2)分解因式:

(拓展提升):

3)嘗試運(yùn)用以上思路分解因式:

【答案】1(2)(3)

【解析】

利用十字相乘法、分組分解法進(jìn)行因式分解

(1) =

=

=

=

=

2=

=

=

拓展提升

(3) =

=

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△MNP的三邊分別向兩邊延長(zhǎng),并在每?jī)蓷l延長(zhǎng)線上任取兩點(diǎn)連接起來(lái),又得到了三個(gè)新的三角形.求證:∠A+∠B+∠C+∠D+∠E+∠F360°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展校園藝術(shù)節(jié)系列活動(dòng),派小明到文體超市購(gòu)買若干個(gè)文具袋作為獎(jiǎng)品.這種文具袋標(biāo)價(jià)每個(gè)10元,請(qǐng)認(rèn)真閱讀結(jié)賬時(shí)老板與小明的對(duì)話:

1)結(jié)合兩人的對(duì)話內(nèi)容,求小明原計(jì)劃購(gòu)買文具袋多少個(gè)?

2)學(xué)校決定,再次購(gòu)買鋼筆和簽字筆共50支作為補(bǔ)充獎(jiǎng)品,兩次購(gòu)買獎(jiǎng)品總支出不超過(guò)400元.其中鋼筆標(biāo)價(jià)每支8元,簽字筆標(biāo)價(jià)每支6元,經(jīng)過(guò)溝通,這次老板給予8折優(yōu)惠,那么小明最多可購(gòu)買鋼筆多少支?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對(duì)角線AC

重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長(zhǎng)為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為等腰RtABC的斜邊AB的中點(diǎn),EBC邊上一點(diǎn),連接ED并延長(zhǎng)交CA的延長(zhǎng)線于點(diǎn)F,過(guò)DDHEFACG、交BC的延長(zhǎng)線于H,則以下結(jié)論:DE=DG;BE=CG;DF=DB;(BH=CF.其中正確的是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,點(diǎn)DBC邊上一點(diǎn),以AD為直徑的⊙OBC相切于點(diǎn)D,與ADAC分別交于點(diǎn)E、F

(1)如圖①,若∠AEF=52°,求∠C的度數(shù).

(2)如圖②,若EF經(jīng)過(guò)點(diǎn)O,且∠AEF=35°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)課改,王老師把班級(jí)里60名學(xué)生分成若干小組,每小組只能是5人或6人,則有幾種分組方案( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過(guò)A(0,2)、B(4,0)兩點(diǎn).

(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這條拋物線于N,求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(1)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,請(qǐng)直接寫(xiě)出第四個(gè)頂點(diǎn)D的所有坐標(biāo)(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AB=2BC=,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE翻折得到多邊形AB’C’E,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B’,C’

1)當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求DF的長(zhǎng)

2)如果點(diǎn)MCD的中點(diǎn),那么在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過(guò)程中,求C’M的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案