【題目】在△ABC中,DAB上一點,且AC2=ABADBC2=BABD,求證:CDAB

【答案】見解析。

【解析】

根據(jù)AC2=ADAB,BC2=BDAB,得出△ACD∽△ABC,△BDC∽△BCA,根據(jù)相似三角形的性質(zhì)得出∠ADC=ACB、∠BDC=BCA,根據(jù)∠ADC+BDC=180°,ADC=BDC=90°解答.

解:證明:∵AC2=ADAB

=,又∠A=A,

∴△ACD∽△ABC

∴∠ADC=ACB

BC2=BDAB,

=,又∠B=B,

∴△BDC∽△BCA

∴∠BDC=BCA

∴∠ADC=BDC

∵點D為邊AB上一點,

∴∠ADC+BDC=180°,

∴∠ADC=BDC=90°,

CDAB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使ADC與BDA相似,可以添加一個條件.下列添加的條件中錯誤的是( )

A. ACD=DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,cm,動點2cm/s的速度在的邊上沿的方向勻速運動,動點的邊上沿的方向勻速運動,、兩點同時出發(fā),5s后,點到達(dá)終點,點立即停止運動(此時點尚未到達(dá)點).設(shè)點運動的時間為(s),的面積為(cm2),的函數(shù)圖像如圖②所示.

(1)圖①中 cm,點運動的速度為 cm/s;

(2)求函數(shù)的最大值;

(3)當(dāng)為何值時,以、為頂點的三角形與相似?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角三角形ABC,∠ACB=90°,D是斜邊AB的中點,且AC=BC=16分米,以點B為圓心,BD為半徑畫弧,交BC于點F,以點C為圓心,CD為半徑畫弧,分別交AB、BC于點EG.求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸上,將菱形OABC繞原點O順時針旋轉(zhuǎn)75°至OA’B’C’的位置.若OB=,∠C=120°,則點B’的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)如圖,AB是半圓O的直徑,點P是半圓上不與點AB重合的一個動點,延長BP到點C,使PC=PB,DAC的中點,連接PD,PO.

1)求證:△CDP≌△POB

2)填空:

AB=4,則四邊形AOPD的最大面積為 ;

連接OD,當(dāng)∠PBA的度數(shù)為 時,四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=3x2+36x+81.

(1)寫出它的頂點坐標(biāo);

(2)當(dāng)x取何值時,y隨x的增大而增大;

(3)求出圖象與x軸的交點坐標(biāo);

(4)當(dāng)x取何值時,y有最小值,并求出最小值;

(5)當(dāng)x取何值時,y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案