【題目】某校開展“走進中國數(shù)學史”為主題的知識競賽活動,八、九年級各有200名學生參加競賽,為了解這兩個年級參加競賽學生的成績情況,從中各隨機抽取20名學生的成績,數(shù)據(jù)如下:
八年級 | 91 | 89 | 77 | 86 | 71 | 九年級 | 84 | 93 | 66 | 69 | 76 |
51 | 97 | 93 | 72 | 91 | 87 | 77 | 82 | 85 | 88 | ||
81 | 92 | 85 | 85 | 95 | 90 | 88 | 67 | 88 | 91 | ||
88 | 88 | 90 | 64 | 91 | 96 | 68 | 97 | 99 | 88 |
整理上面數(shù)據(jù),得到如下統(tǒng)計表:
成績 人數(shù) 年級 | |||||
八年級 | 1 | 1 | 3 | 7 | 8 |
九年級 | 0 | 4 | 2 | 8 | 6 |
樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
統(tǒng)計表 年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
八年級 | 83.85 | 88 | 91 | 127.03 |
九年級 | 83.95 | 87.5 |
| 99.45 |
根據(jù)以上信息,回答下列問題:
(1)寫出上表中眾數(shù)的值.
(2)試估計八、九年級這次選拔成績80分以上的人數(shù)和.
(3)你認為哪個年級學生的競賽成績較好?說明你的理由.(至少從兩個不同的角度說明推斷的合理性)
【答案】(1)88;(2)290人;(3)理由見解析.
【解析】
(1)根據(jù)眾數(shù)的定義直接解答即可;
(2)先求出在隨機抽取20名學生的成績中80分以上的人數(shù)所占的百分比,再乘以總人數(shù),即可得出答案;
(3)根據(jù)給出的平均數(shù)和方差分別進行分析,即可得出答案.
(1)∵88出現(xiàn)了4次,出現(xiàn)的次數(shù)最多,
∴眾數(shù)m的值為88.
(2) (人)
所以估計八、九年級這次選拔成績80分以上的人數(shù)和約為290人.
(3)我認為九年級學生的競賽成績比較好,理由如下:
①九年級學生競賽成績的平均數(shù)較高,表示九年級競賽成績較好;
②九年級學生競賽成績的方差小,表示九年級學生競賽成績比較集中,整體水平較好.
另解:
我認為八年級學生競賽成績比較好,理由如下:
①中位數(shù)較高,表示八年級競賽成績較好;
②八年級學生競賽成績的眾數(shù)較高,表示八年級學生多數(shù)成績較好.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A在x軸正半軸上,頂點C在y軸正半軸上,點B的坐標為(4,m)(5≤m≤7),反比例函數(shù)y=(x>0)的圖象交邊AB于點D.
(1)用m的代數(shù)式表示BD的長;
(2)設點P在該函數(shù)圖象上,且它的橫坐標為m,連結PB,PD
①記矩形OABC面積與△PBD面積之差為S,求當m為何值時,S取到最大值;
②將點D繞點P逆時針旋轉90°得到點E,當點E恰好落在x軸上時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=交x軸于點A、B(點A在點B的左側),交y軸于點C.
(1)如圖,點D是拋物線在第二象限內(nèi)的一點,且滿足|xD﹣xA|=2,過點D作AC的平行線,分別與x軸、射線CB交于點F、E,點P為直線AC下方拋物線上的一動點,連接PD交線段AC于點Q,當四邊形PQEF的面積最大時,在y軸上找一點M,x軸上找一點N,使得PM+MN﹣NB取得最小值,求這個最小值;
(2)如圖2,將△BOC沿著直線AC平移得到△B′O′C′,再將△B'O′C′沿B′C′翻折得到△B′O″C′,連接BC′、O″B,則△C′BO″能否構成等腰三角形?若能,請直接寫出所有符合條件的點O″的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生對籃球、羽毛球、乒乓球、踢毽子、跳繩等5項體育活動的喜歡程度,某校隨機抽查部分學生,對他們最喜歡的體育項目(每人只選一項)進行了問卷調(diào)查,并將統(tǒng)計數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖:
請解答下列問題:
(1)m= %,這次共抽取了 名學生進行調(diào)查;請補全條形統(tǒng)計圖;
(2)若全校有800名學生,則該校約有多少名學生喜愛打籃球?
(3)學校準備從喜歡跳繩活動的4人(二男二女)中隨機選取2人進行體能測試,求抽到一男一女學生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為2的正方形ABCD關于y軸對稱,邊AD在x軸上,點B在第四象限,直線BD與反比例函數(shù)的圖象交于點B、E.
(1)求反比例函數(shù)及直線BD的解析式;
(2)求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】y=ax2+bx+c的圖象如圖所示,則下列4個代數(shù)式a+2b+c,2a+b+c,3a+2b+c,-,其中值一定大于1的個數(shù)是( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等腰直角中,,過點,的圓交于點,交于點,連結.
(1)若,,分別求,的長
(2)如圖2,連結,若,的面積為10,求.
(3)如圖3,在圓上取點使得(點與點不重合),連結,且點是的內(nèi)心
①請你畫出,說明畫圖過程并求的度數(shù).
②設,,,若,求的內(nèi)切圓半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).
(1)求該拋物線所對應的函數(shù)解析式;
(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com