【題目】下列各式運(yùn)算結(jié)果為正數(shù)的是( )
A.-24×5
B.(12)4×5
C.(1-24)×5
D.1-(3×5)6

【答案】B
【解析】A.-24×5<0 ;
B. (1-2)4 ×5>0 ;
C.(1-24)×5 <0;
D. 1-(3×5)6<0.
.所以選擇B
【考點(diǎn)精析】本題主要考查了有理數(shù)的乘方的相關(guān)知識(shí)點(diǎn),需要掌握有理數(shù)乘方的法則:1、正數(shù)的任何次冪都是正數(shù)2、負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí): (-a)n =an 或 (a-b)n=(b-a)n才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABC=90°,以AB為直徑的O與AC邊交于點(diǎn)D,過(guò)點(diǎn)D的直線(xiàn)交BC邊于點(diǎn)E,BDE=A.

(1)判斷直線(xiàn)DE與O的位置關(guān)系,并說(shuō)明理由;

(2)若O的半徑R=5,cosA=,求線(xiàn)段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)有一個(gè)角是60°的菱形繞它的中心旋轉(zhuǎn),使它與原來(lái)的菱形重合,那么旋轉(zhuǎn)的角度至少是

A90° B180° C270° D360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與x軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,﹣3),且BO=CO

(1)求這個(gè)二次函數(shù)的解析式;

(2)設(shè)這個(gè)二次函數(shù)的圖象的頂點(diǎn)為M,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,將點(diǎn)A行向右平移3個(gè)單位長(zhǎng)度,再向下平移5個(gè)單位長(zhǎng)度,得到 ;將點(diǎn)B先向下平移5個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度,得到 ;則 相距( )
A.4個(gè)單位長(zhǎng)度
B.5個(gè)單位長(zhǎng)度
C.6個(gè)單位長(zhǎng)度
D.7個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為ABAC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC

1)求證:四邊形ADCF是菱形;

2)若BC=8,AC=6,求四邊形ABCF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校教師假期外出考察4天,已知這四天的日期之和是38,那么這四天的日期分別是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照下列步驟做一做:

(1)一個(gè)兩位數(shù)的個(gè)位上的數(shù)是a,十位上的數(shù)是b,請(qǐng)寫(xiě)出這個(gè)兩位數(shù);

(2)交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,得到一個(gè)新數(shù);請(qǐng)寫(xiě)出這個(gè)新兩位數(shù);

(3)求這兩個(gè)兩位數(shù)的和.結(jié)果能被11整除嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 在平面直角坐標(biāo)系中,將點(diǎn)P21向右平移3個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度得到點(diǎn)P的坐標(biāo)是( )

A.(2,4B.(15C.(1,-3D.(-5,5

查看答案和解析>>

同步練習(xí)冊(cè)答案