【題目】如圖,已知拋物線y=ax2+bx+ca0,c0)交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,設(shè)過點(diǎn)A,B,C三點(diǎn)的圓與y軸的另一個(gè)交點(diǎn)為D

1)如圖1,已知點(diǎn)A,BC的坐標(biāo)分別為(﹣2,0),(8,0),(0,﹣4);

求此拋物線的表達(dá)式與點(diǎn)D的坐標(biāo);

若點(diǎn)M為拋物線上的一動(dòng)點(diǎn),且位于第四象限,求△BDM面積的最大值;

2)如圖2,若a=1,求證:無論b,c取何值,點(diǎn)D均為定點(diǎn),求出該定點(diǎn)坐標(biāo).

【答案】1,D04);36;(2)證明見解析,(01).

【解析】試題分析:(1利用待定系數(shù)法求拋物線的解析式;利用勾股定理的逆定理證明∠ACB=90°,由圓周角定理得AB為圓的直徑,再由垂徑定理知點(diǎn)C、D關(guān)于AB對(duì)稱,由此得出點(diǎn)D的坐標(biāo).

求出△BDM面積的表達(dá)式,再利用二次函數(shù)的性質(zhì)求出最值.

2)根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)、根與系數(shù)的關(guān)系、相似三角形求解.

試題解析:解:(1①∵拋物線y=ax2+bx+c過點(diǎn)A﹣2,0),B8,0),

可設(shè)拋物線解析式為.

拋物線y=ax2+bx+c過點(diǎn)C0,﹣4),

,解得.

拋物線的解析式為: ,即.

∵OA=2,OB=8,OC=4∴AB=10

如答圖1,連接AC、BC

由勾股定理得:AC=BC=

∵AC2+BC2=AB2=100,

∴∠ACB=90°.∴AB為圓的直徑.

由垂徑定理可知,點(diǎn)CD關(guān)于直徑AB對(duì)稱,∴D04).

設(shè)直線BD的解析式為y=kx+b,

B8,0),D0,4),,解得.直線BD解析式為:

設(shè)Mx),

如答圖2,過點(diǎn)MMEy軸,交BD于點(diǎn)E,則Ex, ).

ME=

SBDM=SMED+SMEB=MExE﹣xD+MExB﹣xD=MExB﹣xD=4ME.

SBDM=

當(dāng)x=2時(shí),△BDM的面積有最大值為36.

2)證明:如答圖3,連接AD、BC

由圓周角定理得:∠ADO=∠CBO,∠DAO=∠BCO,

∴△AOD∽△COB..

設(shè)Ax10),Bx2,0),

已知拋物線y=x2+bx+cc0),∴OC=﹣c,x1x2=c.

..

無論b,c取何值,點(diǎn)D均為定點(diǎn),該定點(diǎn)坐標(biāo)D01).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點(diǎn),且AP=BQ=a (其中0<a<8).

(1)若PQBC,求a的值;

(2)若PQ=BQ,把線段CQ繞著點(diǎn)Q旋轉(zhuǎn)180°,試判別點(diǎn)C的對(duì)應(yīng)點(diǎn)C’是否落在線段QB上?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將經(jīng)過一次平移后得到,圖中標(biāo)出了點(diǎn)的對(duì)應(yīng)點(diǎn).(小正方形邊長(zhǎng)為1的頂點(diǎn)均為小正方形的頂點(diǎn))

1)補(bǔ)全;

2)畫出邊上的中線;

3)畫出邊上的高線

4的面積為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于給定的兩點(diǎn),若存在點(diǎn),使得的面積等于1,即,則稱點(diǎn)為線段的“單位面積點(diǎn)”.

解答下列問題:

如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為.

1)在點(diǎn),,中,線段的“單位面積點(diǎn)”是______.

2)已知點(diǎn),,點(diǎn)是線段的兩個(gè)“單位面積點(diǎn)”,點(diǎn)的延長(zhǎng)線上,若,直接寫出點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各比值中,是直角三角形的三邊之比的是(

A.B.C.D.3:4:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB,CD為矩形的四個(gè)頂點(diǎn),AB=16 cm,AD=6 cm,動(dòng)點(diǎn)PQ分別從點(diǎn)A,C同時(shí)出發(fā),點(diǎn)P以3 cm/s的速度向點(diǎn)B移動(dòng),一直到點(diǎn)B為止,點(diǎn)Q以2 cm/s的速度向點(diǎn)D移動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).問:

(1)P,Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),四邊形PBCQ的面積是33 cm2?

(2)P,Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),點(diǎn)P與點(diǎn)Q之間的距離是10 cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,則下 列結(jié)論中正確的個(gè)數(shù)有(

①4a+b=0;

②9a+3b+c<0;

若點(diǎn)A3,y1),點(diǎn)B,y2),點(diǎn)C5,y3)在該函數(shù)圖象上,則y1y3y2;

若方程a(x+1)(x﹣5)=﹣3的兩根為x1x2x1<x2 , x1<﹣1<5<x2

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

課題學(xué)習(xí):如何解一元二次不等式?

例題:解一元二次不等式

解:

由有理數(shù)的乘法法則兩數(shù)相乘,同號(hào)得正,有:

解不等式組:

解不等式組:

的解集為

:一元二次不等式的解集為

任務(wù):(1)上面解一元二次不等式的過程中體現(xiàn)出了數(shù)學(xué)的一些基本思想方法,請(qǐng)?jiān)谙铝羞x項(xiàng)中選出你認(rèn)為正確的一項(xiàng):_____ ;(填選項(xiàng)即可)

A.分類討論思想;B.數(shù)形結(jié)合思想;C.公理化思想;D.函數(shù)思想

2)求一元二次不等式的解集為:_____ (直接填寫結(jié)果,不寫解答過程)

3)仿照例題中的數(shù)學(xué)思想方法,求分式不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在建立平面直角坐標(biāo)系的網(wǎng)格紙中,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(-1,0).

1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得到A’B’C’,作出A’B’C’

2)把△ABC向右平移7個(gè)單位長(zhǎng)度得到△ABC″,作出△ABC″;

3△A’B’C’與△ABC″是否成中心對(duì)稱?若是,則找出對(duì)稱中心P’,并寫出其坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案