精英家教網 > 初中數學 > 題目詳情

【題目】如果關于x的一元二次方程kx2﹣3x﹣1=0有兩個不相等的實根,那么k的取值范圍是

【答案】k>﹣ 且k≠0
【解析】解:∵關于x的一元二次方程kx2﹣3x﹣1=0有兩個不相等的實數根,
∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,
解得:k>﹣ 且k≠0.
故答案為:k>﹣ 且k≠0.
本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.也考查了一元二次方程的定義.根據一元二次方程的定義和△的意義得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范圍.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小明的爸爸和媽媽分別駕車從家同時出發(fā)去上班,爸爸行駛到甲處時,看到前面路口時紅燈,他立即剎車減速并在乙處停車等待,爸爸駕車從家到乙處的過程中,速度v(m/s)與時間t(s)的關系如圖1中的實線所示,行駛路程s(m)與時間t(s)的關系如圖2所示,在加速過程中,s與t滿足表達式s=at2

(1)根據圖中的信息,寫出小明家到乙處的路程,并求a的值;
(2)求圖2中A點的縱坐標h,并說明它的實際意義;
(3)爸爸在乙處等代理7秒后綠燈亮起繼續(xù)前行,為了節(jié)約能源,減少剎車,媽媽駕車從家出發(fā)的行駛過程中,速度v(m/s)與時間t(s)的關系如圖1中的折線O﹣B﹣C所示,行駛路程s(m)與時間t(s)的關系也滿足s=at2 , 當她行駛到甲處時,前方的綠燈剛好亮起,求此時媽媽駕車的行駛速度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結論有( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一般地,當α、β為任意角時,sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβ;sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°= × + × =1.類似地,可以求得sin15°的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a,b,c為常數且a≠0)的圖象如圖所示,則一次函數y=ax+b與反比例函數y= 的圖象可能是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.
求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,△ABO≌△ADO.下列結論:
①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.
其中所有正確結論的序號是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小宇想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數量x(棵)之間存在如圖所示的函數關系.

(1)求y與x的函數關系式;
(2)若在購買計劃中,B種苗的數量不超過35棵,但不少于A種苗的數量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

同步練習冊答案