【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱(chēng)為接近度.在研究接近度時(shí),應(yīng)保證相似圖形的接近度相等.

(1)設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為,將菱形的接近度定義為,于是,越小,菱形越接近于正方形.

①若菱形的一個(gè)內(nèi)角為,則該菱形的“接近度”等于 ;

②當(dāng)菱形的“接近度”等于 時(shí),菱形是正方形.

(2)設(shè)矩形相鄰兩條邊長(zhǎng)分別是),將矩形的接近度定義為,于是越小,矩形越接近于正方形.

你認(rèn)為這種說(shuō)法是否合理?若不合理,給出矩形的接近度一個(gè)合理定義.

【答案】1①∵內(nèi)角為70°,

與它相鄰內(nèi)角的度數(shù)為110°

菱形的接近度”=|m﹣n|=|110﹣70|=402分

當(dāng)菱形的接近度等于0時(shí),菱形是正方形.4分

2)不合理.

例如,對(duì)兩個(gè)相似而不全等的矩形來(lái)說(shuō),它們接近正方形的程度是相同的,但|a﹣b|卻不相等.

合理定義方法不唯一.

如定義為

越小,矩形越接近于正方形;

越大,矩形與正方形的形狀差異越大;

當(dāng)時(shí),矩形就變成了正方形.6分

【解析】1)根據(jù)相似圖形的定義知,相似圖形的形狀相同,但大小不一定相同,相似圖形的接近度相等.所以若菱形的一個(gè)內(nèi)角為70°,則該菱形的接近度等于|m﹣n|;當(dāng)菱形的接近度等于0時(shí),菱形是正方形;

2)不合理,舉例進(jìn)行說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校教育將立德樹(shù)人置于首位,某校在開(kāi)展以社會(huì)主義核心價(jià)值觀(guān)為主題的征文活動(dòng)中,(一)班計(jì)劃從2愛(ài)國(guó)2誠(chéng)信為主題的征文中隨機(jī)選取2份進(jìn)行交流,利用樹(shù)狀圖或表格計(jì)算,在所選取的2份征文中,愛(ài)國(guó)為主題的征文同時(shí)被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1DBC中點(diǎn),ADBCEBC上除B,DC外任意一點(diǎn),根據(jù)“SAS”,可證明,所以ABAC,∠B=∠C.在ABEACE中,,不能證明,因?yàn)檫@是“SSA”的情形,是鈍角三角形,是銳角三角形,它們不可能全等.如果兩個(gè)三角形都是直角三角形,“SSA”就變成“HL”,就可以用來(lái)證明兩個(gè)三角形全等.同樣,如果我們知道兩個(gè)三角形都是鈍角三角形或銳角三角形,并且它們滿(mǎn)足“SSA”的情形,也是一定能全等的,但必須通過(guò)構(gòu)造直角三角形來(lái)間接證明.

問(wèn)題:已知,如圖2,ADAC,

1)根據(jù)現(xiàn)有條件直接證明,可以嗎?為什么?

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x22m+1x+mm+1=0

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程的兩根分別為x1、x2,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句正確的有( )句

正方形都相似;有一個(gè)角對(duì)應(yīng)相等的菱形相似;

有一個(gè)角相等的兩個(gè)等腰三角形相似;如果一個(gè)三角形有兩個(gè)角分別為,另一個(gè)三角形有兩個(gè)角分別為,那么這兩個(gè)三角形可能不相似.

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(基礎(chǔ)運(yùn)用)

如圖①所示,直線(xiàn)Ly=x+5x軸負(fù)半軸,y軸正半軸分別交于AB兩點(diǎn).

1)點(diǎn)A坐標(biāo)為 ,SOAB=

2)如圖②所示,設(shè)QAB延長(zhǎng)線(xiàn)上一點(diǎn),作直線(xiàn)OQ,過(guò)A、B兩點(diǎn)分別作AMOQM,BNOQN,①求證:△AOM≌△OBN;②若AM=4,求MN的長(zhǎng);

(思維延伸)直線(xiàn)Ly=mx+5mx軸負(fù)半軸,y軸正半軸分別交于A、B兩點(diǎn).

3)當(dāng)m取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第 一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EFy軸于P點(diǎn),如圖③.問(wèn):當(dāng)點(diǎn)By軸正半軸上運(yùn)動(dòng)時(shí),試猜想線(xiàn)段PE與線(xiàn)段PF的數(shù)量關(guān)系并證明;

4)如圖③,當(dāng)m取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),以AB為邊在第二象限作等腰直角△ABE,則動(dòng)點(diǎn)E在直線(xiàn) 上運(yùn)動(dòng).(直接寫(xiě)出直線(xiàn)的表達(dá)式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩家運(yùn)輸公司規(guī)定每位旅客攜帶行李的費(fèi)用與所帶行李質(zhì)量之間的關(guān)系圖.

(1)由圖可知,行李質(zhì)量只要不超過(guò)______kg,甲公司就可免費(fèi)攜帶,如果超過(guò)了規(guī)定的質(zhì)量,則每超過(guò)1 kg要付運(yùn)費(fèi)_______元;

(2)解釋圖中點(diǎn)M所表示的實(shí)際意義;

(3)若設(shè)旅客攜帶的行李質(zhì)量為x(kg),所付的行李費(fèi)是y(元),請(qǐng)分別寫(xiě)出y甲與y乙(元)隨x(kg)之間變化的關(guān)系式;

(4)若你準(zhǔn)備攜帶45 kg的行李出行,在甲、乙兩家公司中你會(huì)選擇哪一家?應(yīng)付行李費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案