【題目】已知一次函數(shù)的圖象與反比例函數(shù) (k ≠ 0) 在第一象限內(nèi)的圖象交于點(diǎn)A(1,m).
(1) 求反比例函數(shù)的表達(dá)式;
(2) 點(diǎn)B在反比例函數(shù)的圖象上, 且點(diǎn)B的橫坐標(biāo)為2. 若在x軸上存在一點(diǎn)M,使MA+MB的值最小,求點(diǎn)M的坐標(biāo).
【答案】(1);(2)點(diǎn)M的坐標(biāo)為 .
【解析】
(1)把點(diǎn)A(1,m)代入一次函數(shù)y=2x,即可求出m=2,再把點(diǎn)A(1,2)代入反比例函數(shù),即可求出反比例函數(shù)的表達(dá)式;
(2) 作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn),連接交x軸于點(diǎn)M,此時(shí)MA+MB最小,A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)(1,-2),求出直線(xiàn)的表達(dá)式,即可求解.
(1)∵A(1,m)在一次函數(shù)y=2x的圖象上
∴m=2,
將A(1,2)代入反比例函數(shù)得k=2
∴反比例函數(shù)的表達(dá)式為
(2)作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn),連接交x軸于點(diǎn)M,
此時(shí)MA+MB最小
A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)(1,-2),
∵B(2,1)
∴直線(xiàn)的表達(dá)式為
∴點(diǎn)M的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我省中小學(xué)積極開(kāi)展綜合實(shí)踐活動(dòng),某校準(zhǔn)備組織開(kāi)展四項(xiàng)綜合實(shí)踐活動(dòng):“A.我是非遺小傳人,B.學(xué)做家常餐,C.愛(ài)心義賣(mài)行動(dòng),D.找個(gè)崗位去體驗(yàn)”.為了解學(xué)生最喜愛(ài)哪項(xiàng)綜合實(shí)踐活動(dòng),隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每位學(xué)生只能選擇一項(xiàng)),將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息回答下列問(wèn)題:
(1)本次一共調(diào)查了 名學(xué)生,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有1200名學(xué)生,估計(jì)最喜愛(ài)B和C項(xiàng)目的學(xué)生一共有多少名?
(4)現(xiàn)有最喜愛(ài)A,B,C,D活動(dòng)項(xiàng)目的學(xué)生各一人,學(xué)校要從這四人中隨機(jī)選取兩人交流活動(dòng)體會(huì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選取最喜愛(ài)C和D項(xiàng)目的兩位學(xué)生的概率.
最喜愛(ài)各項(xiàng)綜合實(shí)踐活動(dòng)條形統(tǒng)計(jì)圖 最喜愛(ài)各項(xiàng)綜合實(shí)踐活動(dòng)扇形統(tǒng)計(jì)圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)政府提出的“綠色發(fā)展·低碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車(chē),經(jīng)市場(chǎng)調(diào)查得知,購(gòu)買(mǎi)3量男式單車(chē)與4輛女式單車(chē)費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車(chē)與4輛女式單車(chē)共需16000元.
(1)求男式單車(chē)和女式單車(chē)的單價(jià);
(2)該社區(qū)要求男式單比女式單車(chē)多4輛,兩種單車(chē)至少需要22輛,購(gòu)置兩種單車(chē)的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店以20元/千克的單價(jià)新進(jìn)一批商品,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元/千克)之間為一次函數(shù)關(guān)系,如圖所示.
(1)求y與x的函數(shù)表達(dá)式;
(2)要使銷(xiāo)售利潤(rùn)達(dá)到800元,銷(xiāo)售單價(jià)應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是計(jì)算機(jī)中“掃雷”游戲的畫(huà)面.在一個(gè)有 9×9 個(gè)方格的正方形雷區(qū)中,隨機(jī)埋藏著10顆地雷,每個(gè)方格內(nèi)最多只能藏1顆地雷.小王在游戲開(kāi)始時(shí)隨機(jī)地點(diǎn)擊一個(gè)方格,點(diǎn)擊后出現(xiàn)了如圖所示的情況.我們把與標(biāo)號(hào)3的方格相鄰的方格記為A區(qū)域(畫(huà)線(xiàn)部分),A區(qū)域外的部分記為B區(qū)域.?dāng)?shù)字3表示在A區(qū)域有3顆地雷.為了最大限 度的避開(kāi)地雷,下一步應(yīng)該點(diǎn)擊的區(qū)域是___. (填“A”或“B”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,給出如下定義:若點(diǎn)P的橫、縱坐標(biāo)均為整數(shù),且到圓心C的距離d≤r,則稱(chēng)P為⊙C 的關(guān)聯(lián)整點(diǎn).
(1)當(dāng)⊙O的半徑r=2時(shí),在點(diǎn)D(2,-2),E(-1,0),F(0,2)中,為⊙O的關(guān)聯(lián)整點(diǎn)的是 ;
(2)若直線(xiàn)上存在⊙O的關(guān)聯(lián)整點(diǎn),且不超過(guò)7個(gè),求r的取值范圍;
(3)⊙C的圓心在x軸上,半徑為2,若直線(xiàn)上存在⊙C的關(guān)聯(lián)整點(diǎn),求圓心C的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買(mǎi)10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu),經(jīng)調(diào)查:購(gòu)買(mǎi)了3臺(tái)甲型設(shè)備比購(gòu)買(mǎi)2臺(tái)乙型設(shè)備多花了16萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少花6萬(wàn)元.
(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購(gòu)買(mǎi)節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有幾種購(gòu)買(mǎi)方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這個(gè)圖案是3世紀(jì)我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的,人們稱(chēng)它為“趙爽弦圖”.已知AE=3,BE=2,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點(diǎn)的機(jī)會(huì)均等),則恰好落在正方形EFGH內(nèi)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)任務(wù).
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線(xiàn)段分成不相等的兩部分.使較短線(xiàn)段與較長(zhǎng)線(xiàn)段的比等于較長(zhǎng)線(xiàn)段與原線(xiàn)段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線(xiàn)段,再展平;
第二步:將紙片沿折疊,使落到線(xiàn)段上,的對(duì)應(yīng)點(diǎn)為,展平;
第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線(xiàn)段分成不相等的兩部分.使較短線(xiàn)段與較長(zhǎng)線(xiàn)段的比等于較長(zhǎng)線(xiàn)段與原線(xiàn)段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線(xiàn)段,再展平;
第二步:將紙片沿折疊,使落到線(xiàn)段上,的對(duì)應(yīng)點(diǎn)為,展平;
第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).
任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點(diǎn);
(2)請(qǐng)寫(xiě)出一個(gè)生活中應(yīng)用黃金分割的實(shí)際例子.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com