【題目】在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c (a≠O)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-4,O),拋物線的對(duì)稱軸是直線x=-3,且經(jīng)過A、C兩點(diǎn)的直線為y=kx+4.

(1)求拋物線的函數(shù)表達(dá)式;

(2)將直線AC向下平移m個(gè)單位長(zhǎng)度后,得到的直線l與拋物線只有一個(gè)交點(diǎn)D,求m的值;

(3)拋物線上是否存在點(diǎn)Q,使點(diǎn)Q到直線AC的距離為?若存在,請(qǐng)直接寫出Q的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】(1);(2);(3)

, .

【解析】試題分析:(1)由經(jīng)過A、C兩點(diǎn)直線為y=kx+4,且點(diǎn)C在y軸上,確定出點(diǎn)C坐標(biāo),根據(jù)拋物線的對(duì)稱性確定出B點(diǎn)坐標(biāo),然后用待定系數(shù)法即可求得拋物線的解析式;

(2)根據(jù)點(diǎn)A的坐標(biāo)確定出直線AC的解析式,根據(jù)平移設(shè)平移后的解析式為y=x+4-m ,與聯(lián)立組成方程組,根據(jù)只有一個(gè)交點(diǎn),利用根據(jù)的判別式即可求得m的值;

(3)由AC:y=x+4可知到直線AC距離為的點(diǎn)在直線y=x+3或直線y=x+5上,分情況進(jìn)行討論即可得.

試題解析:(1)∵經(jīng)過兩點(diǎn)直線為,且點(diǎn)軸上,

∴C(0,4),

∵拋物線的對(duì)稱軸是直線,A(-4,0),

∴B(-2,0),

∴設(shè)拋物線的解析式為:

∵拋物線經(jīng)過點(diǎn)(0,4),

,

解得: ,

∴拋物線的函數(shù)表達(dá)式為;

(2)將代入

,

解得,

∴直線的函數(shù)表達(dá)式為

∵直線是由直線向下平移個(gè)單位得到的,

∴設(shè)直線的解析式為 ,

∵直線與拋物線相交,

,

∵只有一個(gè)交點(diǎn),

即: ,

∴m=2;

(3)由AC:y=x+4可知到直線AC距離為的點(diǎn)在直線y=x+3或直線y=x+5上,

解方程組 ,

,

所以Q點(diǎn)坐標(biāo)為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,試問平行嗎?為什么?

下面是說明的過程,請(qǐng)?jiān)? )內(nèi)寫上理由.

解:( )

( )

, (等量代換)

( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,∠E=∠F90°,∠B=∠CACAB,給出下列結(jié)論:① 1=∠2;② BECF;③ ACNABM;④ CDDN,其中正確的結(jié)論有( )個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,點(diǎn)E是邊AD的中點(diǎn).連接BE,在BE上找一點(diǎn)F,連接AF,將AF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°AG,點(diǎn)F與點(diǎn)G對(duì)應(yīng).AG、BD延長(zhǎng)線交于點(diǎn)H.若AB=4,當(dāng)F、E、G三點(diǎn)共線時(shí),求SBFH=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD3CD4,點(diǎn)PAC上一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)AC不重合),過點(diǎn)P分別作PEBC于點(diǎn)E,PFBCAB于點(diǎn)F,連接EF,則EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定一種新運(yùn)算:對(duì)于任意有理數(shù)ab,規(guī)定ab=ab2+2ab+a.如:13=1×32+2×1×3+1=16

1)求2-1)的值;

2)若(a+13=32,求a的值;

3)若m=2x,n=x3(其中x為有理數(shù)),試比較m、n的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中O是原點(diǎn),平行四邊形ABCO的頂點(diǎn)A、C的坐標(biāo)分別8,0)、(3,4,點(diǎn)D,E把線段OB三等分,延長(zhǎng)CDCE分別交OA、AB于點(diǎn)F,G,連接FG.則下列結(jié)論:FOA的中點(diǎn);OFDBEG相似;③四邊形DEGF的面積是;.正確的個(gè)數(shù)是(

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)背景:過中心對(duì)稱圖形的對(duì)稱中心的任意一條直線都將其分成全等的兩個(gè)部分.

(1)如圖,直線m經(jīng)過平行四邊形ABCD對(duì)角線的交點(diǎn)O,則S四邊形AEFB  S四邊形DEFC(填“>”“<”“=”);

(2)如圖,兩個(gè)正方形如圖所示擺放,O為小正方形對(duì)角線的交點(diǎn),求作過點(diǎn)O的直線將整個(gè)圖形分成面積相等的兩部分;

(3)八個(gè)大小相同的正方形如圖所示擺放,求作直線將整個(gè)圖形分成面積相等的兩部分(用三種方法分割).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點(diǎn),

(1)如圖1,過點(diǎn)EEH⊥BC,垂足為點(diǎn)H,求線段CH的長(zhǎng);

(2)作線段BE的垂直平分線分別交邊BCBE、AB于點(diǎn)D、OF.

①如圖2,當(dāng)∠BAC=90°時(shí),求BD的長(zhǎng);

②如圖3,設(shè)tan∠ACB=xBD=y,求yx之間的函數(shù)表達(dá)式和tan∠ACB的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案