【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
⑴小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
【答案】(1)見解析 (2)
【解析】(1)延長EB交DG于點H,先證出Rt△ADG≌Rt△ABE,得出∠AGD=∠AEB,﹢根據(jù)∠HBG=∠EBA,得出∠HGB+∠HBG=90°即可;
(2)過點A作AP⊥BD交BD于點P,根據(jù)△DAG≌△BAE得出DG=BE,∠APD=90°,求出AP、DP,利用勾股定理求出PG,﹢根據(jù)DG=DP+PG求出DG,最后根據(jù)DG=BE即可得出答案.
解:(1)如解圖①所示,延長EB交DG于點H.
∵四邊形ABCD和四邊形AEFG都為正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE,
∴△ADG≌△ABE(SAS), ∴∠AGD=∠AEB.
在△ADG中,∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°.
在△EDH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,即DG⊥BE
(2)如解圖②,連結DG,過點A作AM⊥DG交DG于點M,
∠AMD=∠AMG=90°.
∵四邊形ABCD和四邊形AEFG都為正方形,
∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE.
在△ADG和△ABE中,
∴△ADG≌△ABE(SAS),∴DG=BE.
∵BD為正方形ABCD的對角線,∴∠MDA=45°.
在Rt△AMD中,∠MDA=45°,
∵AD=2,∴DM=AM=,
在Rt△AMG中,根據(jù)勾股定理得:
GM==.
∵DG=DM+GM=+,
∴BE=DG=+
科目:初中數(shù)學 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300km的A,B兩地同時出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y與行駛時間x之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y與行駛時間x之間的函數(shù)關系式,并標明自變量的取值范圍;
(2)若已知乙車行駛的速度是40千米/小時,求出發(fā)后多長時間,兩車離各自出發(fā)地的距離相等;
(3)它們在行駛過程中有幾次相遇.并求出每次相遇的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關系如圖所示.請你根據(jù)圖象提供的信息完成以下問題:
(1)求降價前銷售金額y(元)與售出西瓜x(千克)之間的函數(shù)關系式.
(2)小明從批發(fā)市場共購進多少千克西瓜?
(3)小明這次賣瓜賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,線段AM為BC邊上的中線,動點D在直線AM上時,以CD為一邊在CD的下方作等邊三角形CDE,連接BE
(1)若點D在線段AM上時,求證:△ADC≌△BEC;
(2)當動點D在直線AM上時,設直線BE與直線AM的交點為O,
①當動點D在線段AM的延長線上時,求當∠ACE為多少度時,點B、D、E在一條直線上;②當動點D在直線AM上時,試判斷∠AOB是否為定值?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD中,點E,F(xiàn)分別為BC,CD上的點,連接AE,BF相交于點H,且AE⊥BF.
(1)如圖1,連接AC交BF于點G,求證:∠AGF=∠AEB+45°;
(2)如圖2,延長BF到點M,連接MC,若∠BMC=45°,求證:AH+BH=BM;
(3)如圖3,在(2)的條件下,若點H為BM的三等分點,連接BD,DM,若HE=1,求△BDM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設a,b,c是△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以O為圓心的兩個同心圓中,小圓的弦AB的延長線交大圓于點C,若AB=3,BC=1,則與圓環(huán)的面積最接近的整數(shù)是( )
A. 9 B. 10 C. 15 D. 13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】P是△ABC內(nèi)一點,∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,則∠APC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商場經(jīng)銷一種高檔水果,如果每千克盈利元,每天可售出千克.經(jīng)市場調查發(fā)現(xiàn),出售價格每降低元,日銷售量將增加千克.那么每千克應降價多少元,銷售該水果每天可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com