【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC. ①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

【答案】①證明:在△ABE和△CBD中,
∴△ABE≌△CBD(SAS);
②解:∵在△ABC中,AB=CB,∠ABC=90°,
∴∠BAC=∠ACB=45°,
由①得:△ABE≌△CBD,
∴∠AEB=∠BDC,
∵∠AEB為△AEC的外角,
∴∠AEB=∠ACB+∠CAE=30°+45°=75°,
則∠BDC=75°
【解析】①利用SAS即可得證;②由全等三角形對(duì)應(yīng)角相等得到∠AEB=∠CDB,利用外角的性質(zhì)求出∠AEB的度數(shù),即可確定出∠BDC的度數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,,點(diǎn)在邊上,且,將沿對(duì)折至,延長(zhǎng)交邊于點(diǎn),連接、.則下列結(jié)論:①;;;.其中正確的是( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過(guò)點(diǎn)A作⊙O的切線AE交CD的延長(zhǎng)線于點(diǎn)E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣x+3(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為直線x=﹣2.
(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究: 探究一:如圖1,設(shè)△PAD的面積為S,令W=tS,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒(méi)有,說(shuō)明理由;

探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.(參考資料:拋物線y=ax2+bx+c(a≠0)對(duì)稱軸是直線x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】結(jié)算下列各題
(1)計(jì)算:| ﹣2|+( 1﹣(π﹣3.14)0 ;
(2)計(jì)算:[xy(3x﹣2)﹣y(x2﹣2x)]÷x2y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示,空?qǐng)A柱形容器內(nèi)放著一個(gè)實(shí)心的“柱錐體”(由一個(gè)圓柱和一個(gè)同底面的圓錐組成的幾何體).現(xiàn)向這個(gè)容器內(nèi)勻速注水,水流速度為5cm3/s,注滿為止.已知整個(gè)注水過(guò)程中,水面高度h(cm)與注水時(shí)間t(s)之間的關(guān)系如圖②所示.請(qǐng)你根據(jù)圖中信息,解答下列問(wèn)題:

(1)圓柱形容器的高為cm,“柱錐體”中圓錐體的高為cm;
(2)分別求出圓柱形容器的底面積與“柱錐體”的底面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正方形EFGH邊長(zhǎng)相等,下列說(shuō)法:

①這個(gè)圖案可以看成正方形ABCD繞點(diǎn)O旋轉(zhuǎn)45°前后的圖形共同組成的;

②這個(gè)圖案可以看成△ABC繞點(diǎn)O分別旋轉(zhuǎn)45°,90°,135°,180°,225°前后的圖形共同組成的;

③這個(gè)圖案可以看成△BOC繞點(diǎn)O分別旋轉(zhuǎn)45°,90°,135°,225°,250°前后的圖形共同組成的.

其中正確的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A1、A2、A3、…、An(n為正整數(shù))都在數(shù)軸上.點(diǎn)A2在點(diǎn)A1的左邊,且A1A2=1;點(diǎn)A3在點(diǎn)A2的右邊,且A2A3=2;點(diǎn)A4在點(diǎn)A3的左邊,且A3A4=3;…,點(diǎn)A2018在點(diǎn)A2017的左邊,且A2017A2018=2017,若點(diǎn)A2018所表示的數(shù)2018,則點(diǎn)A1所表示的數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】臨海市初中第三教研區(qū)為了豐富學(xué)生課余活動(dòng),組織同學(xué)開(kāi)展每周一次的社團(tuán)活動(dòng),活動(dòng)內(nèi)容有足球、跳繩、跳舞、籃球、象棋共5項(xiàng),為方便組織,規(guī)定每位同學(xué)只能報(bào)一項(xiàng)活動(dòng),根據(jù)報(bào)名繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)寫(xiě)出扇形統(tǒng)計(jì)圖中的m和n的值;
(3)瑤瑤和欣欣兩名同學(xué)對(duì)足球、籃球、象棋三項(xiàng)活動(dòng)都很感興趣,決定從三項(xiàng)活動(dòng)中隨機(jī)抽取一項(xiàng)參加,利用樹(shù)狀圖或列表表示所有可能結(jié)果,并求出兩人參加同一項(xiàng)目的概率;
(4)由于場(chǎng)地限制,參加足球活動(dòng)的學(xué)生人數(shù)不能超過(guò)參加其余活動(dòng)學(xué)生人數(shù)的 ,那么至少幾位同學(xué)需要從參加足球活動(dòng)調(diào)整到參加其余活動(dòng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案