【題目】如圖,在△ABC 中,∠ABC=50°,∠ACB=80°,延長 CB 至 D,使 DB=BA,延長 BC 至 E,使 CE=CA,連接 AD 和 AE,求∠D,∠DAE 的度數(shù).
【答案】∠D=25°,∠DAE=115°.
【解析】
由DB=BA即可得到∠D=∠BAD,根據(jù)已知條件及三角形外角等于與它不相鄰兩個內(nèi)角之和即可得到∠D的值,要求∠DAE,根據(jù)三角形內(nèi)角和定理可知只需求出∠E即可.由CE=CA即可得到∠E=∠CAE,再結(jié)合三角形外角等于與它不相鄰兩個內(nèi)角之和即可得到∠E的值,進而可得∠DAE的值.
解:∵∠ABC=50°,∠ACB=80°(已知),
∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣80°=50°(三角形內(nèi)角和等于 180°),
∵DB=BA(已知),
∴∠D=∠DAB=∠ABC=25°(等邊對等角),
∵CE=CA(已知),
∴∠E=∠CAE=∠ACB=40°(等邊對等角),
∴∠DAE=∠DAB+∠BAC+∠CAE=25°+50°+40°=115°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等腰三角形,AC=BC,△BDC和△ACE分別為等邊三角形,直線AE與BD相交于點F,連接CF,交AB于點G.
(1)若∠ACB=150°,求∠AFB的度數(shù);
(2)求證:AG=BG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠ACB=25°,現(xiàn)將ABCD沿EF折疊,使點C與點A重合,點D落在G處,則∠GFE的度數(shù)( )
A.135°
B.120°
C.115°
D.100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為 的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);
(1)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ, ①則此時鐵片是什么形狀;
②給出證明,并通過計算說明此時鐵片都能穿過圓孔;
(2)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片;
①當BE=DF= 時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀思考
我們知道,在數(shù)軸上|a|表示數(shù)a所對應(yīng)的點到原點的距離,這是絕對值的幾何意義,由此我們可進一步地來研究數(shù)軸上任意兩個點之間的距離,一般地,如果數(shù)軸上兩點A、B 對立的數(shù)用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數(shù)的減去左邊的點所表示的數(shù)來計算,例如:數(shù)軸上P,Q兩點表示的數(shù)分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.
啟發(fā)應(yīng)用
如圖,點A在數(shù)軸上對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0
(1)求線段AB的長;
(2)如圖,點C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,
①求線段BC的長;
②在數(shù)軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應(yīng)的數(shù):若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分別寫有數(shù)0,2﹣1 , ﹣2,cos30°,3的五張卡片,除數(shù)字不同外其他均相同,從中任意抽取一張,那么抽到非負數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,(1)指出DC和AB被AC所截得的內(nèi)錯角;
(2)指出AD和BC被AE所截得的同位角;
(3)指出∠4與∠7,∠2與∠6,∠ADC與∠DAB各是什么關(guān)系的角,并指出各是哪兩條直線被哪一條直線所截形成的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com