【題目】如圖:一次函數(shù)y=kx+b的圖像交x軸正半軸于點(diǎn)A、y軸正半軸于點(diǎn)B,且OA=OB=1.以線段AB為邊在第一象限作正方形ABCD,點(diǎn)D在反比例函數(shù)y=圖像上.

(1)求一次函數(shù)的關(guān)系式,并判斷點(diǎn)C是否在反比例函數(shù)y=圖像上;

(2)在直線AB上找一點(diǎn)P,使PC+PD的值最小,并求出點(diǎn)P的坐標(biāo).

【答案】(1)點(diǎn)C在反比例函數(shù)圖像上;(2)P(,

【解析】1)利用待定系數(shù)法求出一次函數(shù)的解析式,過(guò)DDEx軸于E,OAB≌△EDA,得出點(diǎn)D坐標(biāo),同理可求出C點(diǎn)坐標(biāo),再利用待定系數(shù)法求出反比例函數(shù)的解析式,將點(diǎn)C代入反比例函數(shù)解析式中驗(yàn)證即可得出點(diǎn)C在反比例函數(shù)的圖象上;

(2)延長(zhǎng)DAy軸于F,根據(jù)OAB是等腰直角三角形可證DF關(guān)于直線AB對(duì)稱(chēng),連接CF與直線AB的交點(diǎn)即為點(diǎn)P,利用待定系數(shù)法求出直線CF的解析式,即可得出答案.

(1)OA=OB=1,

A(1,0),B(0,1),

∴一次函數(shù)關(guān)系式為y=-x+1,

過(guò)DDEx軸于E,

∵∠B=AED=90°, BAD=90°,

∴∠OBA+OAB=90°, DAE+OAB=90°,

∴∠OBA=DAE,

又∵AB=DA,

OAB≌△EDA,

AE=OB=1,DE=OA=1,

OE=2,

D(2,1)

同理可得,C(1,2)

D(2,1)代入y=中,則m=2,

y=,

當(dāng)x=1時(shí),y=2,

∴點(diǎn)C在反比例函數(shù)圖像上;

(2)延長(zhǎng)DAy軸于F

∵∠BAD=90°,

∴∠BAF=90°,

OAB是等腰直角三角形,

∴∠OBA=45°,

FAB是等腰直角三角形,

AF=AB=AD,

AB垂直平分DF,

DF關(guān)于直線AB對(duì)稱(chēng),

連接CFABP,則點(diǎn)P即為所求.

C(1,2)、F(0,-1),

∴直線CF的函數(shù)的關(guān)系式為y=3x-1,

解方程組 ,

P).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.

(發(fā)現(xiàn)與證明中,,將沿翻折至,連結(jié).

結(jié)論1重疊部分的圖形是等腰三角形;

結(jié)論2.

試證明以上結(jié)論.

(應(yīng)用與探究)

中,已知,,將沿翻折至,連結(jié).若以、、為頂點(diǎn)的四邊形是正方形,求的長(zhǎng).(要求畫(huà)出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形、、、…按如圖所示的方式放置.點(diǎn)、、、…和點(diǎn)、、、…分別在直線軸上,則點(diǎn)的坐標(biāo)是__________.(為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的對(duì)稱(chēng)軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.

(1)若直線經(jīng)過(guò)兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對(duì)稱(chēng)軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角ABC中,ADBC邊上的高.BAF=CAG=90°,且AB=AF=AC=AG.連接FG,交DA的延長(zhǎng)線于點(diǎn)E,連接BG,CF.下列結(jié)論:①∠FAG+BAC=180°;BG=CF;BGCF④∠EAF=ABC.其中一定正確的個(gè)數(shù)是( 。

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上.

(1)B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)為 ;

(2)將△AOB向左平移3個(gè)單位長(zhǎng)度得到△A1O1B1,請(qǐng)畫(huà)出△A1O1B1;

(3)在(2)的條件下,A1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)同學(xué)到距學(xué)校8千米的某地參加社會(huì)實(shí)踐活動(dòng),一部分同學(xué)步行,另一部分同學(xué)騎自行車(chē),沿相同路線前往.如圖,,分別表示步行和騎車(chē)的同學(xué)前往目的地所走的路程(千米)與所用時(shí)間(分鐘)之間的函數(shù)圖象.則下列判斷錯(cuò)誤的是( )

A. 騎車(chē)的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘

B. 騎車(chē)的同學(xué)和步行的同學(xué)同時(shí)到達(dá)目的地

C. 步行的速度是7.5千米/小時(shí)

D. 騎車(chē)的同學(xué)從出發(fā)到追上步行的同學(xué)用了18分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)共隨機(jī)調(diào)查了___名學(xué)生,課外閱讀時(shí)間在68小時(shí)之間有___人,并補(bǔ)全頻數(shù)分布直方圖;

(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù);

(3)請(qǐng)估計(jì)該校3000名學(xué)生每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案