精英家教網 > 初中數學 > 題目詳情
已知關于x的方程x2-2(m+1)x+m2=0
(1)當m取何值時,方程有兩個實數根;
(2)為m選取一個合適的整數,使方程有兩個不相等的實數根,并求出這兩個實數根.
【答案】分析:(1)方程有兩個實數根,必須滿足△=b2-4ac≥0,從而建立關于m的不等式,求出實數m的取值范圍.
(2)答案不唯一,方程有兩個不相等的實數根,即△>0,可以解得m>-,在m>的范圍內選取一個合適的整數求解就可以.
解答:解:(1)由題意知:△=b2-4ac=[-2(m+1)]2-4m2=[-2(m+1)+2m][-2(m+1)-2m]=-2(-4m-2)=8m+4≥0,
解得m≥
∴當m≥時,方程有兩個實數根.

(2)選取m=0.(答案不唯一,注意開放性)
方程為x2-2x=0,解答x1=0,x2=2.
點評:1、一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數根;
(2)△=0?方程有兩個相等的實數根;
(3)△<0?方程沒有實數根.
2、第2小題屬于開放題,注意答案的不唯一性.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數根.
(1)求m的最大整數是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數根,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數值,方程總有實數根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案