【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
分析:(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進而得到∠BAM=∠CAN,再利用SAS可證明△BAM≌△CAN,繼而得出結論;
(2)也可以通過證明△BAM≌△CAN,得出結論,和(1)的思路完全一樣.
解答:(1)證明:∵△ABC、△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在△BAM和△CAN中,
AB=AC
∠BAM=∠CAN
AM=AN
,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN;

(2)解:結論∠ABC=∠ACN仍成立.
理由如下:∵△ABC、△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在△BAM和△CAN中,
AB=AC
∠BAM=∠CAN
AM=AN
,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
點評:本題主要考查了等邊三角形的性質(zhì),以及全等三角形的判定與性質(zhì),解答本題的關鍵是仔細觀察圖形,找到全等的條件,利用全等的性質(zhì)證明結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•衢州)【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江衢州卷)數(shù)學(帶解析) 題型:解答題

【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年福建省福鼎市九年級上學期第一次月考數(shù)學試卷(解析版) 題型:解答題

【提出問題】

(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.

【類比探究】

(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.

【拓展延伸】

(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江衢州卷)數(shù)學(解析版) 題型:解答題

【提出問題】

(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.

【類比探究】

(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.

【拓展延伸】

(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.

 

查看答案和解析>>

同步練習冊答案